Министерство образования Республики Беларусь Учреждение образования «МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ»

Кафедра автоматизации технологических процессов и производств

ОСНОВЫ КОМПЬЮТЕРИЗАЦИИ ТЕХНОЛОГИЙ В СИСТЕМАХ АВТОМАТИКИ ХИМИЧЕСКОЙ (ПИЩЕВОЙ) ПРОМЫШЛЕННОСТИ

Лабораторный практикум

для студентов специальности

1 – 53 01 01 Автоматизация технологических процессов и производств (по направлениям)

Направления специальности:

1–53 01 01–04 Автоматизация технологических процессов и производств (химическая промышленность);

1-53 01 01-06 Автоматизация технологических процессов и производств (пищевая промышленность)

Часть 2

Могилев 2017

УДК 65.011.66

На заседании кафедры автоматизации технологических процессов и производств

Протокол №10 от 04.03.2011

Одобрена и рекомендована к утверждению УМС по специальности

1- 53 01 01 Автоматизация технологических процессов и производств (по направлениям)

протокол № _ от _____г. Председатель УМСС к.т.н., доцент

М.М. Кожевников

Составитель: Е.А. Колюкович

Рецензент кандидат технических наук, доцент МГУП Е.Л. Волынская

Лабораторный практикум предназначен для использования студентами для студентов специальности 1 – 53 01 01 Автоматизация технологических процессов и производств дневной и заочной форм обучения при выполнении лабораторных работ по дисциплине «Основы компьютеризации технологий в системах автоматики химической (пищевой) промышленности».

Приведены теоретические сведения, методические указания к самостоятельной подготовке и проведению работ, а также вопросы для самопроверки.

©УО «Могилевский государственный университет продовольствия», 2017

Содержание

Общие положения	4
Лабораторная работа №1. Безусловная оптимизация нулевого и	
первого порядка	4
Лабораторная работа №2. Решение задач линейного	
программирования	. 12
Лабораторная работа №3. Транспортная задача, задача о смесях и	
задача производственного планирования	. 18
Лабораторная работа №4. Решение задач квадратичного	
программирования	. 28
Лабораторная работа №5. Составление статической	
математической модели смесителя потоков	. 33
Лабораторная работа №6. Составление статической	
математической модели теплообменника	. 36
Список рекомендуемой литературы	. 40
Приложение А – Исходные даные	. 41
Приложение Б – Исходные даные	. 43
Приложение В – Исходные даные	. 46
Приложение Г – Исходные даные	. 52
Приложение Д – Исходные даные	. 54

Общие положения

Лабораторный практикум по курсу «Основы компьютеризации технологий в системах автоматики химической (пищевой) промышленности» проводится в соответствии с предусмотренным планом количеством часов и графиком, составленным для каждой учебной группы. Перечень лабораторных работ для каждой специальности утвержден в учебных программах.

На первом занятии студенты проходят инструктаж по технике безопасности при выполнении лабораторных работ, о чем делается запись в соответствующем журнале.

К началу лабораторного занятия студент обязан ознакомиться с содержанием и методикой выполнения предстоящей работы, как по настоящим методическим указаниям, так и по рекомендуемым литературным источникам. Особое внимание следует обратить на синтаксис и ключевые слова программных продуктов Mathcad и Matlab, разработку алгоритма решений поставленных задач, правильность написания функций и подпрограмм. Студент, не подготовленный к занятию, к работе не допускается.

Лабораторная работа №1. Безусловная оптимизация нулевого и первого порядка

Цель работы: изучение методов решения задач безусловной оптимизации нулевого и первого порядка с помощью программных продуктов Mathcad и Matlab.

1.1 Теоретические сведения

Важнейшей задачей применения расчетных методов при компьютерном моделировании химико-технологических процессов (ХТП) является определение оптимальных, т.е. наилучших условий их функционирования.

Решение этой задачи возможно при выполнении трех условий:

– выборе критерия оптимальности функционирования XTП – целевой функции R;

– выявлении ресурсов оптимизации – независимых переменных оптимизации $\overline{x} = [x_1, ..., x_n]$, оказывающих, по возможности, наибольшее влияние на величину целевой функции;

– реализации метода оптимизации, обеспечивающего определение оптимального (наилучшего) значения целевой функции путем целенаправленного изменения независимых переменных оптимизации.

С математической точки зрения задачи оптимизации следует отнести к типу экстремальных задач.

В общем случае при оптимизации XTП различают два класса экстремальных задач:

1) решение представляется как совокупность оптимальных значений конечного числа независимых (управляющих) переменных (в основном, для

процессов с сосредоточенными параметрами и описываемых системами конечных уравнений),

2) решение представляется как совокупность неизвестного вида функций от переменных либо по времени (для динамических процессов, так называемых распределенных во времени процессов), либо по пространственной или пространственным координатам (для распределенных в пространстве процессов).

Решение экстремальной задачи первого типа заключается в нахождении совокупности значений независимых (оптимизирующих или управляющих) переменных, при которой заданная целевая функция R этих переменных имеет максимальное или минимальное значение. Для решения таких задач разработано достаточно много математических методов, отличающихся стратегией поиска экстремума. Как правило, нельзя рекомендовать какой-то один универсальный метод; для решения конкретной задачи следует учитывать ее особенности и опыт применения различных методов. При поиске экстремума функции многих переменных наибольшее распространение получили методы шагового поиска, реализация которых осуществляется последовательными шагами. Все существующие методы при этом различаются лишь стратегиями выбора направления и величины шага поиска.

В дальнейшем будем полагать, что всегда ищется экстремум, являющийся минимумом заданной целевой функции многих переменных. Задача на поиск максимума свозится к задаче на поиск минимума простым изменением знака функции.

В результате задача оптимизации в узком смысле (экстремальная задача) может быть записана как:

$$\min_{\overline{x}^{\min} \le \overline{x} \le \overline{x}^{\max}} R(\overline{x}).$$
(1.1)

В этом случае отрезок $[x^{\min}, x^{\max}]$ представляет собой ограничения 1-го рода, накладываемые на независимые переменные, и соответствует области допустимых значений независимых переменных оптимизации, в которой определяются их оптимальные величины (x^{opt}) , обеспечивающие минимум целевой функции R^{\min} .

Задача оптимизации в широком смысле (задача нелинейного программирования) заключается в отыскании экстремума целевой функции при заданных ограничениях в виде равенств и (или) неравенств. Ограничения могут быть линейными и (или) нелинейными.

Если целевая функция не является унимодальной (т.е. имеющей один экстремум), то могут существовать различные типы решений (локальный и глобальный экстремумы). Для задач, соответствующих действительным физическим параметрам процессов, целевая функция обычно является приемлемой, так как обладает единственным экстремумом. Поэтому для большинства практических целей локальное решение задачи не является существенным недостатком.

Методы безусловной оптимизации по способу определения направления поиска делятся на методы нулевого, первого и второго порядков. Для методов нулевого порядка типичен выбор направления поиска по результатам последовательных вычислений целевой функции. По способу выбора совокупности оптимизируемых параметров эти методы делятся на детерминированные и случайного поиска.

Рассмотрим в качестве примера функцию одной переменной вида:

$$y(\mathbf{x}) = x^2 - 7 \cdot x.$$
 (1.2)

и функцию двух переменных вида:

$$f(x, y) = 2 \cdot x^2 + 5 \cdot y^2 + 7 \cdot y - 3 \cdot x + 15.$$
 (1.3)

1.1.1 Решение в Mathcad

В Mathcad оптимизация выполняется функциями minimize (y,x) и maximize (y,x) с параметрами. Данные функции могут использоваться как в блоке решения, так и без него.

Так как y(x) может иметь несколько локальных экстремумов, а функции minimize (y,x) и maximize (y,x) позволяет найти только одно значение, то в Mathcad дополнительно задается начальное приближение переменной x. В результате находится значение экстремума функции y(x), ближайшее к заданному начальному приближению переменной x.

Вводим блок решения (расположение: Математика/Блок решения или Ctr+1). Далее следует заполнить обозначенные поля «Начальные приближения», «Ограничения», «Решатель».

В область «Начальные условия» записываются сама функция и начальное приближение нашей переменной через знак присваивания «:=».

В область «Ограничения» ничего не записываем, так как у нас безусловная оптимизация.

В область «Решатель» записывается функция поиска экстремума «minimize» или «maximize».

Рассмотрим в качестве примера функцию 1.2. Пример решения представлен на рисунках 1.1. 1.2, 1.3.

Рисунок 1.1 – Метод безусловной оптимизации нулевого порядка в блоке решения

Рисунок 1.2 – График функции одной переменной

Рисунок 1.3 – Метод безусловной оптимизации нулевого порядка без блока решения

Рассмотрим в качестве примера функцию 1.3. Так как функция minimize возвращает матрицу решения, то для обращения к её элементам необходимо указывать порядковый номер с помощью индекса матрицы решения (расположение: Математика/Операторы/Векторы и матрицы/М_i или [) Пример решения представлен на рисунках 1.4 и 1.5.

```
\begin{aligned} &f(x,y) \coloneqq 2 \cdot x^2 + 5 \cdot y^2 + 7 \cdot y - 3 \cdot x + 15 \\ &x \coloneqq 0 \\ &y \coloneqq 0 \\ &\min \coloneqq \minize(f,x,y) = \begin{bmatrix} 0.75 \\ -0.7 \end{bmatrix} \\ &f\left(\min_{0},\min_{1}\right) = 11.425 \end{aligned}
```

Рисунок 1.4 – Метод безусловной оптимизации функции двух переменных

Рисунок 1.4 – График функции двух переменных и контурный график

В Mathcad функции minimize и maximize выполняются с использованием решателя KNITRO. Решатель настроен на автоматический перебор нескольких алгоритмов и не работает, только если задача не имеет разумного решения.

1.1.2 Решение в Matlab

Еще одна важная задача численных методов – поиск минимума функции f(x) в некотором интервале изменения x -от x_1 , до x_2 . Если нужно найти максимум такой функции, то достаточно поставить знак «минус» перед функцией. Для решения этой задачи используется следующая функция: fminbnd (f un, x_1 , x_2) возвращает значение x, которое является локальным минимумом функции fun (x) на интервале $x_1 < x < x_2$.

Синтаксис функции:

$$[x, fval] = fminbnd (f un, x_1, x_2), \qquad (1.4)$$

где fun – функция одной переменной;

х₁ – начальное значение интервала;

x₂ – конечное значение интервала.

В зависимости от формы задания функции fminbnd вычисление минимума выполняется известными методами золотого сечения или параболической интерполяции.

Рисунок 1.5 – Метод безусловной оптимизации нулевого порядка

Рисунок 1.6 – График функции одной переменной

Значительно сложнее задача минимизации функций нескольких переменных $f(x_1, x_2,...)$. При этом значения переменных представляются вектором х, причем начальные значения задаются вектором x_0 . Для минимизации функций ряда переменных MATLAB обычно использует разновидности симплекс-метода Нелдера–Мида.

Этот метод является одним из лучших прямых методов минимизации функций ряда переменных, не требующим вычисления градиента или производных функции. Он сводится к построению симплекса в п-мерном пространстве, заданного n+1 вершиной. В двумерном пространстве симплекс является треугольником, а в трехмерном – пирамидой. На каждом шаге итераций выбирается новая точка решения внутри или вблизи симплекса. Она сравнивается с одной из вершин симплекса. Ближайшая к этой точке вершина симплекса обычно заменяется этой точкой. Таким образом, симплекс перестраивается и обычно позволяет найти новое, более точное положение точки решения. Решение повторяется, пока размеры симплекса по всем переменным не станут меньше заданной погрешности решения. Реализующая симплекс-методы Нелдера–Мида функция записывается в виде:

 $[x, fval] = fminsearch (fun, x_0)$ (1.5)

где fun – функция многих переменных;

х₀ – вектор начальных точек.

Эта функция возвращает вектор x, который является локальным минимумом функции fun (x) вблизи x_0 . x_0 может быть скаляром, вектором (отрезком при минимизации функции одной переменной) или матрицей (для функции нескольких переменных).

Рисунок 1.7 – Метод безусловной оптимизации функции двух переменных

Рисунок 1.8 – График функции двух переменных переменной

Как видим результаты вычислений в Matcad и Matlab различными методами дают идентичные результаты.

J	mi	im.m × +
1		- function minim;
2	-	<pre>[x11,x22]=meshgrid(-10:0.5:10,-10:0.5:10);</pre>
3	-	f=of(x11,x22);
4	-	meshc(x11,x22,f)
5	-	<pre>xlabel('x');</pre>
6	-	ylabel('y')
7	-	<pre>zlabel('f')</pre>
8	-	figure
9	-	<pre>[x11,x22]=meshgrid(0.4:0.01:1,-1:0.01:-0.4);</pre>
10	-	f=of(x11,x22);
11	-	contour(x11,x22,f,25)
12	-	<pre>xlabel('x');</pre>
13	-	ylabel('y')
14	-	hold on
15	-	_scatter(0.75,-0.7)
16		<pre>function f=of(x1,x2)</pre>
17	-	f=2.*x1.^2-3*x1+5.*x2.^2+7*x2+15;

Рисунок 1.9 – Пример программы построения графиков

1.2 Задание на выполнение работы

1) Внимательно ознакомиться с теоретическими сведениями лабораторной работы.

2) Выбрать свой вариант исходных данных. Исходные данные представлены в таблице А.1 приложения А. Номер варианта – это порядковый номер в журнале группы.

3) Подготовить алгоритм выполнения лабораторной работы.

4) Выполнить расчеты с использованием программных продуктов Mathcad и Matlab.

5) Подготовить дополнительные информационные материалы таблицы, графики и др., если это необходимо.

6) Результаты оформляются в виде отчета по выполнению лабораторной работы. Краткий отчет содержит: цель работы, исходные данные, скриншоты или листинг программы расчетов, дополнительные информационные материалы, краткий анализ результатов работы.

1.3 Контрольные вопросы

1) Что такое оптимизация?

2) Что такое безусловная оптимизация?

3) Какие методы нулевого порядка используются для безусловной оптимизации?

4) Какие функции используются для безусловной оптимизации в Mathcad?

5) Какие функции используются для безусловной оптимизации в Matlab?

Лабораторная работа №2. Решение задач линейного программирования

Цель работы: изучение методов решения задач линейного программирования (ЛП) с помощью программных продуктов Mathcad и Matlab.

2.1 Теоретические сведения

Математическое программирование – это раздел математики, занимающийся анализом многомерных экстремальных задач управления и планирования и разработкой теории и численных методов их решения. Иными словами, математическое программирование занимается решением задач нахождения максимума или минимума функции многих переменных с ограничениями на область изменения этих переменных. Наиболее разработанной, в настоящие время, составной частью математического программирования, является линейное программирование

Под линейным программированием понимается раздел теории экстремальных задач, в котором изучаются задачи минимизации (или максимизации) линейных функций на множествах, задаваемых системами линейных равенств и неравенств.

В общем случае задача линейного программирования формулируется следующим образом. Найти вектор $x^* = (x^*_1, ..., x^*_n)$, определяющий максимум (минимум) линейной форме

$$\mathbf{f}(\mathbf{x}) = \mathbf{c}_1 \mathbf{x}_1 + \mathbf{c}_2 \mathbf{x}_2 + \dots + \mathbf{c}_n \mathbf{x}_n \tag{2.1}$$

при ограничениях:

Каждое из условий-неравенств определяет полупространство, ограниченное гиперплоскостью. Пересечение полупространств образует выпуклый п-мерный многогранник Q. Условия равенства выделяют из п-мерного пространства (n-l)-мерную плоскость, пересечение которой с областью Q дает выпуклый (n-l) -мерный многогранник G. Экстремальное значение линейной формы (если оно существует) достигается в некоторой вершине многогранника. При вырождении оно может достигаться во всех точках ребра или грани многогранника. В силу изложенного для решения задачу линейного программирования теоретически достаточно вычислить значения функции в вершинах многогранника и найти среди этих значений наибольшее или наименьшее. Однако в практических задачах количество вершин области *G* настолько велико, что просмотр их даже с использованием ЭВМ невозможен. Поэтому разработаны специальные численные методы решения задач линейного программирования, которые ориентируются в основном на две формы записи задач.

Каноническая форма задачи линейного программирования:

и в матричной форме:

$$(c, x) > \max(\min);$$

Ax = b,
x ≥ 0. (2.4)

Здесь A = (a_{ij}) - (mxn) - матрица условий. Ее столбцы $(a_{1j}, ..., a_{mj})^T$, j = 1, ..., n, называются векторами условий. Вектор b = $(b_1, ..., b_m)^T$ носит название вектора правых частей, а c = $(c_1, ..., c_n)$ - вектора коэффициентов линейной формы.

Рассмотрим в качестве примера задачу ЛП вида:

$$f(\mathbf{x}) = 4 \cdot \mathbf{x}_{1} + \mathbf{x}_{2} \to \min,$$

$$\mathbf{x}_{1} + \mathbf{x}_{2} \ge 2,$$

$$\mathbf{x}_{1} - \mathbf{x}_{2} \ge 1,$$

$$\mathbf{x}_{1} \ge 0, \mathbf{x}_{2} \ge 0.$$

(2.5)

2.1.1 Решение в Mathcad

В Mathcad решение задачи ЛП выполняется функциями minimize (y,x) и maximize (y,x) с ограничениями. Данные функции используются только в блоке решения.

Вводим блок решения (расположение: Математика/Блок решения или Ctr+1). Далее следует заполнить обозначенные поля «Начальные приближения», «Ограничения», «Решатель».

В область «Начальные условия» записываются сама функция и начальное приближение нашей переменной через знак присваивания «:=».

В область «Ограничения» записываем наши ограничения.

В область «Решатель» записывается функция поиска экстремума «minimize» или «maximize».

Рассмотрим в качестве примера задачу ЛП 2.5. Пример решения представлен на рисунках 2.1, 2.2.

Рисунок 2.1 – Решение задачи ЛП

Рисунок 2.2 – Геометрическое представление задачи ЛП

2.1.2 Решение в Matlab

В среде Matlab задачи линейного программирования решаются с помощью функции linprog. . Функция linprog решает задачу линейного программирования в форме

$$f^{T} \cdot \mathbf{x} \to \inf,$$

$$\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b},$$

$$\mathbf{Aeq} \cdot \mathbf{x} = \mathbf{beq},$$

$$\mathbf{lb} \leq \mathbf{x} \leq \mathbf{ub}.$$
(2.6)

Синтаксис функции

$$[x, fval] = linprog(f, A, b, Aeq, beq, lb, ub),$$
(2.7)

где f – вектор коэффициентов целевой функции,

А – матрица ограничений-неравенств,

b – вектор правых частей ограничений-неравенств b,

Аеq – матрица ограничений-равенств,

beq – вектор правых частей ограничений-равенств,

lb – вектор, ограничивающий план х снизу,

ub – вектор, ограничивающий план х сверху.

На выходе функция linprog даёт оптимальный план х задачи ЛП (2.6) и экстремальное значение целевой функции fval.

Дополнительно можно задать начальное приближение x0:

[x,fval] = linprog(f,A,b,Aeq,beq,lb,ub,x0).

Рисунок 2.3 – Вызов функции linprog с начальным приближением x0

Если какой-то из входных параметров отсутствует, на его место следует поставить квадратные скобки [], за исключением случая, когда это последний параметр в списке. Например, если нужно решить задачу без ограничений-равенств, в которой не задано начальное приближение, то оператор вызова функции linprog будет выглядеть как на рисунке 2.4.

[x,fval] = linprog(f,A,b,[],[],lb,ub).

Рисунок 2.4 – Вызов функции linprog без ограничений

С помощью входного параметра options устанавливаются некоторые дополнительные настройки, в частности, выбирается алгоритм решения. Matlab решает задачи линейного программирования двумя способами: алгоритмом внутренней точки (Large-Scale Algorithm) и вариантом симплексметода (Medium-Scale Algorithm). По умолчанию используется алгоритм внутренней точки.

Выбор симплекс метода представлен на рисунке 2.5.

```
options = optimoptions('linprog', 'Algorithm', 'dual-simplex');
[x, fval] = linprog(f, A, b, [], [], lb, [], [], options);
```

Рисунок 2.5 – Вызов функции linprog для решения симплекс методом

Необходимо отметить, что ограничения используются строго только меньше либо равно. Если в задаче другой знак неравенства, то его необходимо изменить.

Рассмотрим в качестве примера задачу ЛП 2.5. Работа функции представлена на рисунке 2.6.

```
1 -
      D = [1 1; 1 -1];
     B = [2 \ 1];
2 -
3 -
     lb = zeros(2,1);
      f = [4 1];
4 -
5 -
     A = -D;
     b = -B;
6 -
7 -
      options = optimoptions('linprog', 'Algorithm', 'dual-simplex');
      [x,fval] = linprog(f,A,b,[],[],lb,[],[],options);
8 -
                        x =
                                   fval =
                            1.5000
                            0.5000
                                    6.5000
```

Рисунок 2.6 – Работа функции linprog

```
clear all
close all
clc % удаляются все текущие переменные из памяти MATLAB,
Закрываются все графические окна, очищается экран консоли
D = [1 1; 1 -1];
B = [2 \ 1];
lb = zeros(2,1);
f = [4 1];
A = -D;
b = -B;
options = optimoptions('linprog', 'Algorithm', 'dual-simplex');
[xval,fval] = linprog(f,A,b,[],[],lb,[],[],options)
figure
 [x,y]=meshgrid(0:0.1:4, 0:0.1:4);
of=4*x+y;
meshc(x,y,of)
n=size(x);%получаем размер матрицы x
for i=l:n(l)%количество точек x
for j=1:n(2) %холичество точек у
     if (-x(i, j)-y(i, j)<=-2)&(-x(i,j)+y(i,j)<=-1) %выбор значений функции по ограничению
       New(i,j)=4*x(i,j)+y(i,j); %удовлетворяет ограничению
     else
       New(i,j)=50;%Не удовлетворяет ограничению
     end
  end
-end
figure
meshc(x,y,New)
hold on
 scatter3(xval(1),xval(2),fval)%вывод на поверхность расчетного оптимального значения
```

Рисунок 2.7 – Листинг программы решения задачи ЛП

Рисунок 2.8 – Геометрическое представление задачи ЛП

Как видим, результаты вычислений задачи ЛП в Matcad и Matlab дают идентичные результаты.

2.2 Задание на выполнение работы

1) Внимательно ознакомиться с теоретическими сведениями лабораторной работы.

2) Выбрать свой вариант исходных данных. Исходные данные представлены в таблице Б.1 приложения Б. Номер варианта – это порядковый номер в журнале группы.

3) Подготовить алгоритм выполнения лабораторной работы.

4) Выполнить расчеты с использованием программных продуктов Mathcad и Matlab.

5) Подготовить дополнительные информационные материалы таблицы, графики и др., если это необходимо.

6) Результаты оформляются в виде отчета по выполнению лабораторной работы. Краткий отчет содержит: цель работы, исходные данные, скриншоты или листинг программы расчетов, дополнительные информационные материалы, краткий анализ результатов работы.

2.3 Контрольные вопросы

1) Что такое математическое программирование?

2) Что такое задача ЛП?

3) Какие методы используются для решения задачи ЛП?

4) Какие функции используются для решения задачи ЛП в Mathcad?

5) Какие функции используются для решения задачи ЛП в Matlab?

Лабораторная работа №3. Транспортная задача, задача о смесях и задача производственного планирования

Цель работы: изучение решения специальных задач ЛП в программных продуктах Mathcad и Matlab.

3.1 Теоретические сведения

Все перечисленные задачи представляют собой частные случаи задач линейного программирования.

Рассмотрим транспортную задачу, т. е. задачу, в которой речь идет о рациональной перевозке некоторого однородного продукта от производителей к потребителям.

Пусть имеется m пунктов производства однородного продукта (молочной продукции, хлебобулочных изделий, кондитерских изделий и т.д.) и n пунктов потребления этого продукта (торговых точек или оптовых складов). Мощности пунктов производства составляют a_i (i = 1,...,m) единиц однородного продукта, а потребности каждого j-го пункта потребления равны b_j (j = 1,...,n) единиц. Известны затраты c_{ij} на перевозку единицы продукта от i-го поставщика j-му потребителю. Составить такой план перевозок, при котором суммарные затраты на все перевозки были бы наименьшими.

Пусть спрос и предложение совпадают, т.е.:

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j \tag{3.1}$$

Такую транспортную задачу называют сбалансированной (закрытой). При этом предполагается, что вся продукция от поставщиков будет вывезена и спрос каждого из потребителей будет удовлетворен. Если задача не сбалансирована, то вводиться либо дополнительный производитель или потребитель с нулевой стоимостью доставки и количеством остатка.

Составим математическую модель задачи. Для составления математической модели запишем условия задачи в виде таблицы 3.1.

	1	· · · ·	•	
a_i	b_I	b_2		b_n
a_l	c_{II} x_{II}	C ₁₂ x ₁₂		C_{ln} X_{ln}
<i>a</i> ₂	<i>c</i> ₂₁ <i>x</i> ₂₁	c ₂₂ x ₂₂		C_{2n} X_{2n}
a_m	C_{ml}	C_{m2} x_{m2}		C _{mn} X _{mn}

Таблица 3.2 – Условие транспортной задачи

Обозначим через x_{ij} – количество продукта, перевозимого из i-го пункта производства в j-й пункт потребления. Транспортные издержки перевозки продукта из пункта a_{i:} в пункт b_j составляют c_{ij}. Требуется минимизировать транспортные издержки и удовлетворить запросы всех потребителей за счет производства.

Математическая запись транспортной задачи:

$$\begin{cases} f(\overline{\mathbf{x}}) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} \to \min \\ \sum_{j=1}^{n} x_{ij} = a_{i}, \ i = 1, ..., m, \\ \sum_{i=1}^{n} x_{ij} = b_{j}, \ j = 1, ..., m, \\ x_{ij} \ge 0. \end{cases}$$
(3.2)

Задача определения оптимального состава смеси возникает тогда, когда из имеющихся видов сырья путем их смешивания необходимо получить конечный продукт с заданными свойствами. К этой группе задач относятся, например, задачи получения смесей для консервов, смесей для получения кондитерских изделий, задача о выборе диеты, составление кормового рациона в животноводстве и др. При этом требуется, чтобы стоимость такой смеси была минимальной.

Пусть имеется m видов сырья, запасы которого составляют соответственно $d_{1,...}, d_m$. Из этого сырья необходимо составить смесь, содержащую n веществ, определяющих технические характеристики смеси. Известны величины a_{ij} (i = 1,...,m; j = 1,...,n), определяющие количество j-го вещества в единице i-го вида сырья, цена которого равна c_i (i = i = 1,...,m), а также b_j (j = 1,...,n) – наименьшее допустимое количество i-го вещества в смеси.

Требуется получить смесь с заданными свойствами при наименьших затратах на исходные сырьевые материалы. Для составления математической модели запишем условия задачи в виде таблицы 3.2.

Вид вещества	1	 j	 n	Объем	Цена
Dura or mu a				сырья	сырья
Вид сырья					
1	a_{II}	 a_{lj}	 a_{ln}	d_{I}	c_{I}
i	a _{il}	 a_{ij}	 ain	d_i	Ci
m	a_{ml}	 a_{mj}	 a_{mn}	d_m	Cm
Минимальное количе-					
ство вещества в смеси	b_I	 b_j	 b_n		

Таблица 3.2 – Условие задачи о смеси

Обозначим через x_i (i =1,...,m) количество сырья i-го вида, входящего в состав смеси.

Цель задачи (целевая функция) – минимизировать суммарные затраты на сырье:

$$f(\overline{\mathbf{x}}) = \sum_{i=1}^{m} c_i \cdot x_i \to \min$$

Система ограничений включает в себя ограничения по техническим характеристикам:

$$\begin{cases} a_{11}x_1 + \dots + a_{i1}x_i + \dots + a_{m1}x_m \ge b_1, \\ \dots & \dots & \dots \\ a_{1j}x_1 + \dots + a_{ij}x_i + \dots + a_{mj}x_m \ge b_j, \\ \dots & \dots & \dots \\ a_{1n}x_1 + \dots + a_{in}x_i + \dots + a_{mn}x_m \ge b_n, \end{cases}$$

а также ограничения по объему сырья, которые с учетом неотрицательности переменных примут вид:

$$0 \le x_i \le d_i \ (i=1,...,m).$$

Запишем модель в компактной форме:

$$\begin{cases} f(\overline{\mathbf{x}}) = \sum_{i=1}^{m} c_i \cdot x_i \to \min \\ \sum_{i=1}^{m} a_{ij} \cdot x_i \ge b_j \quad (j = 1, ..., n), \\ 0 \le x_i \le d_i \quad (i = 1, ..., m). \end{cases}$$
(3.3)

Задача оптимального планирования заключается в определении значений плановых показателей с учетом ограниченности ресурсов при условии достижения стратегической цели.

Для изготовления n видов продукции $P_{1,...,}P_{n}$ используется m видов сырья $S_{1,...,}S_{m}$, запасы которого ограничены и составляют соответственно $b_{1,...,}b_{m}$ единиц. Известно, что на производство единицы продукции Pj (j=1,...,n) расходуется a_{ij} единиц ресурса S_{i} (i=1,...,m), а прибыль от реализации единицы продукции P_{j} (j=1,...,n) составляет c_{i} (j=1,...,n).

Требуется определить план производства, который позволяет при наличных ресурсах получить максимальную прибыль предприятия от реализации продукции.

Прежде всего, запишем условия задачи компактно в виде таблицы 3.3.

uomiqueste entobile	зада п	in mp on	оведет	2011110	10 1101001	inpersentition
Вид продукции	P_{I}		P_j		P_n	Запас
Вид сырья			_			pecypca
S_I	a_{II}		a_{lj}		a_{ln}	b_I
S_i	a_{il}		a_{ij}		ain	b_i
S_m	a_{ml}		a_{mj}		a_{mn}	b_m
Прибыль	c_{I}		c_i		C_n	

Таблица 3.3 – Условие задачи производственного планирования

Составим математическую модель задачи.

Обозначим через x_j (j= 1,.,n) планируемое к выпуску количество продукции Pj (j=1,..,n), а через f(x_1 ,..., x_j) - прибыль предприятия от реализации всей продукции.

Тогда планом производства будет вектор $X = (x_1,...,x_n)$, показывающий, какое количество продукции каждого вида будет произведено. Переменные $x_1,...,x_n$ – управляемые переменные.

Цель решения задачи (критерий оптимальности) – максимизировать прибыль:

$$f(\overline{\mathbf{x}}) = \mathbf{c}_1 \cdot \mathbf{x}_1 + \mathbf{c}_2 \cdot \mathbf{x}_2 + \dots + \mathbf{c}_n \cdot \mathbf{x}_n.$$

Суммарные затраты ресурса S_i (i=1,..,m) составляют:

$$a_{i1} \cdot \mathbf{X}_1 + \dots + a_{in} \cdot \mathbf{X}_n$$
.

В силу ограниченности ресурса S_i величиной b_i получим систему ограничений:

$$a_{i1} \cdot \mathbf{x}_1 + \dots + a_{in} \cdot \mathbf{x}_n \le b_i \ (i = 1, \dots, m)$$

На переменные x_j должно быть наложено условие неотрицательности $x_j \ge 0$ (j=1,...,n), т.е. продукция P_j может либо вы пускаться ($x_j \ge 0$), либо не выпускаться ($x_j = 0$).

Итак, математическая модель примет вид:

$$\begin{cases} f(\overline{x}) = \sum_{i=1}^{n} c_{i} \cdot x_{i} \to \max \\ \sum_{j=1}^{m} a_{ji} \cdot x_{i} \leq b_{j} \ (i = 1, ..., n), \\ x_{i} \geq 0 \ (i = 1, ..., n). \end{cases}$$
(3.4)

Рассмотрим в качестве примеров следующие задачи.

Транспортная задача. На складах A1, A2 хранится 150 и 150, единиц одного того же груза соответственно. Требуется доставить его трем магазинам B1, B2, B3 заказы которых составляют 100, 125 и 75 единиц груза. Стоимость перевозки с_{ij} единицы груза с i–го склада j–ому потребителю указаны в транспортной таблице 3.4.

Таблица 3.4 – Исходные данные транспортной задачи

Магазин Склад	B1	В2	В3	Итого
A1	4	2	2	150
A2	7	5	3	150
Итого	100	125	75	

Найти минимальную стоимость перевозок.

Составим математическую запись задачи ЛП по формуле 3.2.

Введём следующие обозначения: x₁ – доставка груза из склада A1 в магазин B1; x₂ – доставка груза из склада A1 в магазин B2; x₃ – доставка груза из склада A1 в магазин B3; x₄ – доставка груза из склада A2 в магазин B1; x₅ – доставка груза из склада A2 в магазин B2; x₆ – доставка груза из склада A2 в магазин B3.

$$\begin{cases} f(\overline{x}) = 4 \cdot x_1 + 2 \cdot x_2 + 2 \cdot x_3 + 7 \cdot x_4 + 5 \cdot x_5 + 3 \cdot x_6 \to \min \\ x_1 + x_2 = 150 \\ x_3 + x_4 = 150 \\ x_1 + x_4 = 100 \\ x_2 + x_5 = 125 \\ x_3 + x_6 = 75 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0. \end{cases}$$
(3.5)

Задача о смеси. Бройлерное хозяйство птицеводческой фермы насчитывает 20 000 цыплят, которые выращиваются до 8-недельного возраста и после соответствующей обработки поступают в продажу. Недельный расход корма в среднем (за 8 недель) составляет 500 г = 0.5 кг. Для того чтобы цыплята достигли к 8-й неделе необходимого веса, кормовой рацион должен удовлетворять определённым требованиям по питательности. Этим требованиям могут соответствовать смеси различных видов кормов, или ингредиентов. В таблице 3.5 приведены данные, характеризующие содержание (по весу) питательных веществ в каждом из ингредиентов и удельную стоимость каждого ингредиента. Смесь должна содержать: не менее 0.8% кальция (от общего веса смеси) не менее 22% белка (от общего веса смеси) не более 5% клетчатки (от общего веса смеси). Требуется определить количество (в кг) каждого из трёх ингредиентов, образующих смесь минимальной стоимости, при соблюдении требований к общему расходу кормовой смеси и её питательности.

Ингредиент	Содержани (н	Стоимость		
	Кальций	Белок	Клетчатка	(руо./кг)
Известняк	0.38	-	-	0.4
Зерно	0.001	0.09	0.02	0.15
Соевые бобы	0.002	0.50	0.08	0.40

Таблица 3.5 – Исходные данные задачи о смеси

Математическая формулировка задачи. Введём следующие обозначения: x_1 – содержание известняка в смеси (кг); x_2 – содержание зерна в смеси (кг); x_3 – содержание соевых бобов в смеси (кг). Общий вес смеси, еженедельно расходуемый на кормление цыплят 10 000 кг.

Составим математическую запись задачи ЛП по формуле 3.3.

$$\begin{cases} f(\overline{x}) = 0.4 \cdot x_1 + 0.15 \cdot x_2 + 0.4 \cdot x_3 \rightarrow \min \\ x_1 + x_2 + x_3 = 10000 \\ 0.38 \cdot x_1 + 0.001 \cdot x_2 + 0.002 \cdot x_3 \ge 0.008 \cdot 10000 \\ 0 \cdot x_1 + 0.09 \cdot x_2 + 0.5 \cdot x_3 \ge 0.22 \cdot 10000 \\ 0 \cdot x_1 + 0.02 \cdot x_2 + 0.08 \cdot x_3 \le 0.05 \cdot 10000 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0. \end{cases}$$
(3.6)

Задача о производственном планировании. Предприятие производит два вида карамели К1 и К2 из трех видов сырья сахара, джема, шоколада. Доход от продажи карамели К1 составляет 3 рубля, а карамели К2 2 рубля. Запасы сахара 160 кг, джема 180 кг, шоколада 196 кг. На производство карамели К1 тратиться 5 кг сахара, 3 кг джема,7 кг шоколада, а на карамель К2 2 кг сахара, 4 кг джема.

Сведем все данные в таблицу 3.6.

Таблица 3.6 – Исходные данные задачи о производственном планировании

		Расход сырья на единицу продукции		
вид сырья	запасы сырья	Карамель К1	Карамель К2	
caxap	160	5	2	
джем	180	3	4	
шоколад	196	7	0	
Дохо	ОД	3	2	

Найти максимальный доход от производства и продажи карамели. Составим математическую запись задачи ЛП по формуле 3.4.

$$\begin{cases} f(\overline{x}) = 3 \cdot x_1 + 2 \cdot x_2 \to \max \\ 5 \cdot x_1 + 2 \cdot x_2 \le 160 \\ 3 \cdot x_1 + 4 \cdot x_2 \le 180 \\ 7 \cdot x_1 + 0 \cdot x_2 \le 196 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$
(3.7)

3.1.1 Решение в Mathcad

В Mathcad решение специальные задачи ЛП выполняется так же функциями minimize (f,x_i) и maximize (f,x_i) с ограничениями. Данные функции используются только в блоке решения.

Вводим блок решения (расположение: Математика/Блок решения или Ctr+1). Далее следует заполнить обозначенные поля «Начальные приближения», «Ограничения», «Решатель».

В область «Начальные условия» записываются сама функция и начальное приближение нашей переменной через знак присваивания «:=».

В область «Ограничения» записываем наши ограничения.

В область «Решатель» записывается функция поиска экстремума «minimize» или «maximize».

Рассмотрим решение транспортной задачи 3.5. Решение представлено на рисунке 3.1.

Рисунок 3.1 – Решение транспортной задачи

Рассмотрим решение задачи о смеси 3.6. Решение представлено на рисунке 3.2.

```
Ограниченивчальные приближения
            ORIGIN := 1
           f(x1, x2, x3) \coloneqq 0.4 \cdot x1 + 0.15 \cdot x2 + 0.4 \cdot x3
           x1 \coloneqq 0
           x2 = 0
           x3 = 0
           x1 + x2 + x3 = 10000
           0.38 \cdot x1 + 0.001 \cdot x2 + 0.002 \cdot x3 \ge 0.008 \cdot 10000
           0 \cdot x1 + 0.09 \cdot x2 + 0.5 \cdot x3 \ge 0.22 \cdot 10000
           0 \cdot x1 + 0.02 \cdot x2 + 0.08 \cdot x3 \le 0.05 \cdot 10000
           x1 \ge 0
           x2 \ge 0
           x_3 > 0
Решатель
                                                              176.228
           Cost := minimize(f, x1, x2, x3) = 6614.356
                                                            3209.416
           f(Cost_1, Cost_2, Cost_3) = 2346.411
```

Рисунок 3.2 – Решение задачи о смеси

Рассмотрим решение задачи о производственном планировании 3.7. Решение представлено на рисунке 3.3.

<u> </u>	
H	$ORIGIN \coloneqq 1$
ИЖИ	$f(x1,x2) \coloneqq 3 \cdot x1 + 2 \cdot x2$
101	$x1 \coloneqq 0$
1dL	x2 := 0
1ple	
19 IB	$5 \cdot x1 + 2 \cdot x2 \le 160$
21Inte	$3 \cdot x1 + 4 \cdot x2 \le 180$
H H	$7 \cdot x1 + 0 \cdot x2 \le 196$
Lbai	$x1 \ge 0$
Ō	$x2 \ge 0$
e l	[00]
ател	$Cost := \text{maximize}(f, x1, x2) = \begin{vmatrix} 20 \\ 20 \end{vmatrix}$
elle	
٩	f(Cost, Cost) = 120

Рисунок 3.3 – Решение задачи о производственном планировании

3.1.2 Решение в Matlab

В среде Matlab задачи линейного программирования решаются с помощью функции linprog. . Функция linprog решает задачу линейного программирования в форме

$$f^{T} \cdot \mathbf{x} \to \inf,$$

$$\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b},$$

$$Aeq \cdot \mathbf{x} = beq,$$

$$\mathbf{lb} \leq \mathbf{x} \leq \mathbf{ub}.$$
(3.8)

Синтаксис функции

$$[x, fval] = linprog(f, A, b, Aeq, beq, lb, ub), \qquad (3.9)$$

где f – вектор коэффициентов целевой функции,

А – матрица ограничений-неравенств,

b – вектор правых частей ограничений-неравенств b,

Aeq – матрица ограничений-равенств,

beq – вектор правых частей ограничений-равенств,

lb – вектор, ограничивающий план х снизу,

ub – вектор, ограничивающий план х сверху.

На выходе функция linprog даёт оптимальный план х задачи ЛП (3.8) и экстремальное значение целевой функции fval.

Если какой-то из входных параметров отсутствует, на его место следует поставить квадратные скобки [], за исключением случая, когда это последний параметр в списке.

Рассмотрим решение транспортной задачи 3.5. Решение представлено на рисунке 3.4.

```
Untitled.m × +
1 -
      f = [4 2 7 5 2 3];%целевая функция
2
      %вводим ограничения в виде равенст для всех 6 неизвестных в каждую строку
3 -
      Aeg=[1 1 1 0 0 0; 0 0 0 1 1 1; 1 0 0 1 0 0; 0 1 0 0 1 0; 0 0 1 0 0 1];
      Beq=[150 150 100 125 75];%правая часть равенства
4 -
5 -
      lb = zeros(6,1);%левый план переменных т.е. x1>=0 и x2>=0 и т.д.
6 -
      [x,fval] = linprog(f,[],[],Aeq,Beq,lb,[],[]);%вызываем функцию linprog
7 -
      x %выводим значение переменных
      fval%выводим значение функции
8 -
```

Optimization terminated. x = 100 50 0 075 75 fval = 875

Рисунок 3.4 – Решение транспортной задачи

Рассмотрим решение задачи о смеси 3.6. Решение представлено на рисунке 3.5.

```
Untitled.m 💥 🕂
1 -
     f = [0.4 0.15 0.4];%целевая функция
     Aeq=[1 1 1];%ограниения в виде равенства
2 -
3 -
     Вед=[10000];%правая часть равенства
     A = [-0.38 -0.001 -0.002; 0 -0.009 -0.5; 0 0.02 0.08];%матрица ограничений в виде неравентсв =<
4 -
     b = [-80 -2200 500];%правые части неравенств
5 -
     lb = zeros(3,1);%левый план переменных т.е. x1>=0 и x2>=0
6 -
7 -
     [x,fval] = linprog(f,A,b,Aeq,Beq,lb,[],[]);%вызываем функцию linprog
8 -
     х %выводим значение переменных
9 -
     fval%выводим значение функции
        Optimization terminated.
        x =
             1.0e+03 *
                                             fval =
              0.1733
              5.5261
                                                  2.6185e+03
              4.3005
```


Рассмотрим решение задачи о производственном планировании 3.7. Решение представлено на рисунке 3.6.

📝 Editor - C:\Program Files\MATLAB\R2016a\bin\Untitled.m Untitled.m 🛛 🕂 f = [-3 -2];%целевая функция со знаком -, так как работает только минимизация 1 -A = [5 2; 3 4; 7 0];%матрица ограничений в виде неравентсв =< 2 b = [160 180 196];%правые части неравенств 3 -1b = zeros(2,1);%левый план переменных т.е. x1>=0 и x2>=0 4 -5 -[x,fval] = linprog(f,A,b,[],[],lb,[],[]); x %выводим значение переменных 6 -7 fvalmax -- fval%выводим значение функции со знаком -, так как ндо было найти максимум Optimization terminated. x = 20.0000 30.0000 fvalmax = 120.0000

Рисунок 3.6 – Решение задачи о производственном планировании

3.2 Задание на выполнение работы

1) Внимательно ознакомиться с теоретическими сведениями лабораторной работы.

2) Выбрать свой вариант исходных данных. Исходные данные представлены в таблицах В.1, В.2, В.3 приложения В. Номер варианта – это порядковый номер в журнале группы.

3) Подготовить алгоритм выполнения лабораторной работы.

4) Выполнить расчеты с использованием программных продуктов Mathcad и Matlab.

5) Подготовить дополнительные информационные материалы таблицы, графики и др., если это необходимо.

6) Результаты оформляются в виде отчета по выполнению лабораторной работы. Краткий отчет содержит: цель работы, исходные данные, скриншоты или листинг программы расчетов, дополнительные информационные материалы, краткий анализ результатов работы.

3.3 Контрольные вопросы

1) Что такое транспортная задача?

2) Что такое задача о смеси?

3) Что такое задача о производственном планировании?

4) Какие функции используются для решения задачи ЛП в Mathcad?

5) Какие функции используются для решения задачи ЛП в Matlab?

Лабораторная работа №4. Решение задач квадратичного программирования

Цель работы: изучение методов численного решения задач квадратичного программирования (КП) с помощью программных продуктов Mathcad и Matlab.

4.1 Теоретические сведения

Задачей КП называется такая задача не линейного программирования, когда целевая функция представляет собой сумму линейной и квадратичной формы (переменные не старше второй степени), а все ограничения линейные, т. е. эта задача на одну ступень выше ЛП и для решения таких задач используется симплекс-метод.

Стандартная форма записи задачи квадратичного программирования: минимизировать целевую функцию, состоящую из линейной и квадратичной составляющих:

$$f(\overline{\mathbf{X}}) = \overline{\mathbf{c}}^T \overline{\mathbf{X}} + \overline{\mathbf{X}}^T D \overline{\mathbf{X}} = \sum_{i=1}^n c_j x_j + \sum_{i=1}^n \sum_{i=1}^n d_{ij} x_i x_j \to \min$$
(4.1)

при линейных ограничения-неравенствах

$$A\overline{X} \le b,$$

$$\overline{X} \ge 0,$$
(4.2)

где D= $(d_{ij})_{n \times n}$ – симметричная неотрицательная определенная матрица.

Рассмотрим в качестве примера функцию двух переменных вида:

$$f(x, y) = 2 \cdot x^{2} - 6 \cdot x - 2 \cdot x \cdot y + 2 \cdot y^{2} \rightarrow \min,$$

$$x + y \leq 2,$$

$$x \geq 0,$$

$$y \geq 0$$

$$(4.3)$$

4.1.1 Решение в Mathcad

В Mathcad решение задачи КП выполняется функциями minimize (y,x) и maximize (y,x) с ограничениями. Данные функции используются только в блоке решения.

Вводим блок решения (расположение: Математика/Блок решения или Ctr+1). Далее следует заполнить обозначенные поля «Начальные приближения», «Ограничения», «Решатель».

В область «Начальные условия» записываются сама функция и начальное приближение нашей переменной через знак присваивания «:=».

В область «Ограничения» записываем наши ограничения.

В область «Решатель» записывается функция поиска экстремума «minimize» или «maximize».

Рассмотрим в качестве примера задачу КП 4.3. Пример решения представлен на рисунках 4.1, 4.2.

Рисунок 4.1 – Решение задачи КП

Рисунок 4.2 – Исходная поверхность и контурный график исходной функции

Рисунок 4.3 – Задание условий на ограничения и построение поверхности с учетом ограничений

4.1.2 Решение в Matlab

В среде MATLAB задачи квадратичного программирования решаются с помощью функции quadprog.

Функция quadprog решает задачу квадратичного программирования в форме:

$$\frac{1}{2} \cdot x^{T} \cdot \overline{H} \cdot \overline{x} + \overline{f}^{T} \cdot \overline{x},$$

$$\overline{A} \cdot \overline{x} \leq \overline{b}, , , \qquad (4.6)$$

$$\overline{A}_{eq} \cdot \overline{x} = \overline{b}_{eq},$$

$$lb \leq x \leq ub.$$

где Н – матрица Гессе;

f – вектор из целевой функции;

А -матрица ограничений-неравенств;

b – вектор правых частей ограничений-неравенств,

А_{еq} – матрица ограничений-равенств;

b_{eq} – вектор правых частей ограничений-равенств;

lb – вектор, ограничивающий план х снизу,

ub – вектор, ограничивающий план х сверху.

На выходе функция quadprog выдаёт оптимальный план х задачи и экстремальное значение целевой функции fval.

Если матрица H несимметрична, то Matlab заменяет её на $(H + H^T)/2$. (При этом значение целевой функции не меняется)

Произведем решение задачи 4.3, программа представлена на рисунке 4.4. Графики представлены на рисунках 4.5 и 4.6.

```
QP.m × LP.m × +
1 -
       clear all
2 -
       close all
3 -
       clc % удаляются все текущие переменные из памяти MATLAB,
4
       вакрываются все графические окна, очищается экран консоли
5 -
       syms xs ys; % объявляем символьные переменные
 6
  _
       f=2*xs.^2-6*xs-2*xs*ys+2*ys.^2; %записываем нашу исходную функцию
 7 -
       k = hessian(f) %paccчитываем матрицу Гессе в символьном виде
 8 -
       H=[4 -2; -2 4]; %вводим коэффициенты матрицы Гессе, рассчитанные ранее
9 -
       f = [-6 0] ; % коэффициенты линейной части целевой функции
10 -
       А = [1 1]; % левая часть ограничений-неравенств
       В = [2]; %правая часть ограничений-неравенств
11 -
12 -
       1b = zeros(2,1) ; % задается левый план
13 -
       [xval, fval]=quadprog(H, f, A, B, [], [], lb, []) %B Mectax rge Het napamerbob BBOgum []
14
       $построение поверхности, без учета ограничений
15 -
       figure
16 -
       [x,y]=meshgrid(-1:0.1:4, -2:0.1:3);%создание двух массивов x[n, m] и y[n, m]
17 -
       of=2*x.^2-6*x-2*x*y+2*y.^2;
18 -
       meshc(x,y,of)
19 -
       n=size(x);%получаем размер матрицы x
20 -
     - for i=l:n(l)%количество точек n
21 -
     for j=1:n(2) %холичество точек m
22 -
           if x(i, j)+y(i, j)<=2 %выбор значений функции по ограничению
23 -
             New(i,j)=2*x(i,j).^2-6*x(i,j)-2*x(i,j).*y(i,j)+2*y(i,j).^2; %ygobnetbopget orpanuvenuo
24 -
           else
25 -
             New(i,j)=100;%Не удовлетворяет ограничению
26 -
           end
27 -
         end
28 -
       - end
29
       $построение поверхности, удовлетворяющей ограничению
30 -
       figure
31 -
       meshc(x,y,New)
32 -
       hold on
33 -
       scatter3(xval(1),xval(2),fval)%вывод на поверхность расчетного оптимального значения
                                   xval =
                                                 fval =
                                        1.5000
                                        0.5000
                                                     -5.5000
```

Рисунок 4.4 – Листинг программы решения задачи КП и решение задачи КП

Рисунок 4.5 – Геометрическое представление задачи КП, поверхность без учета ограничений

Рисунок 4.6 – Геометрическое представление задачи КП, поверхность с учетом ограничений

4.2 Задание на выполнение работы

1) Внимательно ознакомиться с теоретическими сведениями лабораторной работы.

2) Выбрать свой вариант исходных данных. Исходные данные представлены в таблице Г.1 приложения Г. Номер варианта – это порядковый номер в журнале группы.

3) Подготовить алгоритм выполнения лабораторной работы.

4) Выполнить расчеты с использованием программных продуктов Mathcad и Matlab

5) Подготовить дополнительные информационные материалы таблицы, графики и др., если это необходимо.

6) Результаты оформляются в виде отчета по выполнению лабораторной работы. Краткий отчет содержит: цель работы, исходные данные, скриншоты или листинг программы расчетов, дополнительные информационные материалы, краткий анализ результатов работы.

4.3 Контрольные вопросы

1) Как определяется матрица Гесса или гессиан?

2) Что такое задача КП?

3) Какие действия выполняет функция syms?

4) Какие функции используются для решения задачи КП в Mathcad?

5) Какие функции используются для решения задачи КП в Matlab?

Лабораторная работа №5. Составление статической математической модели смесителя потоков

Цель работы Составление статической математической модели смесителя потоков и расчет ее с помощью программного продукта Matlab.

5.1 Теоретические сведения

При составлении математического описания смесителя потоков (рисунок 5.1) воспользуемся следующими допущениями:

1) структура потока в аппарате соответствует режиму идеального смещения;

2) режим смешения в аппарате – установившийся.

Рисунок 5.1 – Смеситель потоков

На рисунке 5.1 обозначены буквами G_i , t_i , C_{pi} , – расход, температура и теплоемкость i-го технологического потока.

Общее уравнение материального баланса имеет вид

$$G_{\text{смеси}} = \sum G_i, i = 1, 2, ... N,$$
 (5.1)

где $G_{\mbox{\tiny CMecu}}- pacxoд выходного потока;$

 $G_i - pacxoды$ компонентов смеси;

N – число веществ в потоке.

Уравнение теплового баланса имеет вид

$$Q_{cmecu} = \sum Q_i - Q_{nomepb}, \qquad (5.2)$$

где *Q*_{смеси} – теплота смеси;

 Q_i – теплота компонентов смеси;

 Q_{nomepb} – теплота потерь в окружающую среду (можно принять равной 5%).

Теплота компонентов определяется:

$$Q_i = G_i \cdot C_{pi} \cdot t_i \tag{5.4}$$

С учетом 5.4, 5.2 уравнение теплового баланса примет вид

$$G_{cmecu} \cdot C_{pcmecu} \cdot t_{cmecu} = 0,95 \cdot \sum G_i \cdot C_{pi} \cdot t_i \quad , \qquad (5.5)$$

где С_{рсмеси}, tсмеси – удельная теплоемкость и температура смеси;

 $C_{pi}, C_{pi}, t_i, - удельные теплоемкости и температуры компонентов смеси.$

Выразим температуру из 5.5

$$t_{cmecu} = \frac{0.95 \cdot \sum G_i \cdot C_{pi} \cdot t_i}{G_{cmecu} \cdot C_{pcmecu}}$$
(5.6)

Температурная зависимость удельной теплоемкости смеси определяется в виде

$$C_{pcmecu} = \sum C_{pi} \cdot \frac{G_i}{G_{cmecu}} , \qquad (5.7)$$

Перепишем уравнение 5.6 с учетом 5.7 для двухкомпонентной смеси

$$t_{cmecu} = 0.95 \cdot \frac{G_1 \cdot C_{p1} \cdot t_1 + G_2 \cdot C_{p2} \cdot t_2}{G_1 \cdot C_{p1} + G_2 \cdot C_{p2}}, \qquad (5.8)$$

На производстве очень часто возникает необходимость в определении оптимальных значений технологических параметров, направленных на уменьшение материальных и энергетических затрат. В данной задаче два компонента стоимость нагрева, которых различается.

Необходимо подобрать такое соотношение расходов, что бы стоимость была минимальна, а температура смеси соответствовала заданной. Пропускная способность теплообменника смешения 3000 кг. Количество холодного компонента не менее 250 кг.

5.2.1 Решение в Mathcad

В Mathcad решение данной задачи выполняется функциями minimize (y,x) и maximize (y,x) с ограничениями. Данные функции используются только в блоке решения.

Вводим блок решения (расположение: Математика/Блок решения или Ctr+1). Далее следует заполнить обозначенные поля «Начальные приближения», «Ограничения», «Решатель».

В область «Начальные условия» записываются сама функция и начальное приближение нашей переменной через знак присваивания «:=».

В область «Ограничения» записываем наши ограничения.

В область «Решатель» записывается функция поиска экстремума «minimize» или «maximize».

5.2.2 Решение в Matlab

Для решения в Matlab необходимо создать новый скрипт. Внести необходимые формулы и переменные и выполнить скрипт. Также построить необходимые графики.

В среде Matlab задачи линейного программирования решаются с помощью функции linprog. . Функция linprog решает задачу линейного программирования в форме

$$f^{T} \cdot \mathbf{x} \to \inf,$$

$$\mathbf{A} \cdot \mathbf{x} \leqslant \mathbf{b},$$

$$Aeq \cdot \mathbf{x} = beq,$$

$$\mathbf{lb} \leqslant \mathbf{x} \leqslant \mathbf{ub}.$$
(5.9)

Синтаксис функции

$$[x, fval] = linprog(f, A, b, Aeq, beq, lb, ub),$$
(5.10)

где f – вектор коэффициентов целевой функции,

А – матрица ограничений-неравенств,

b – вектор правых частей ограничений-неравенств b,

Аеq – матрица ограничений-равенств,

beq – вектор правых частей ограничений-равенств,

lb – вектор, ограничивающий план х снизу,

ub – вектор, ограничивающий план х сверху.

На выходе функция linprog даёт оптимальный план х задачи ЛП (5.9) и экстремальное значение целевой функции fval.

5.3 Задание на выполнение работы

1) Внимательно ознакомиться с теоретическими сведениями лабораторной работы.

2) Выбрать свой вариант исходных данных. Исходные данные представлены в таблице Д.1 приложения Д. Номер варианта – это порядковый номер в журнале группы.

3) Подготовить алгоритм выполнения лабораторной работы.

4) Выполнить расчеты с использованием программных продуктов и Mathcad и Matlab.

5) Построить в одних координатах графики зависимости температуры смеси от расходов компонентов.

6) Результаты оформляются в виде отчета по выполнению лабораторной работы. Краткий отчет содержит: цель работы, исходные данные, скриншоты или листинг программы расчетов, дополнительные информационные материалы, краткий анализ результатов работы.

5.4 Контрольные вопросы

1) Какие допущения используются для построения математических моделей?

2) Что такое статическая математическая модель?

3) Что такое смеситель потоков?

4) Что такое математическая модель?

Лабораторная работа №6. Составление статической математической модели теплообменника

Цель работы Составление статической математической модели теплообменника и расчет ее с помощью программного продукта Matlab.

6.1 Теоретические сведения

При построении математического описания теплообменника (рисунок 6.1) применяются следующие допущения:

- рассматривается стационарный режим;

- теплоотдача не сопровождается изменением агрегатного состояния теплоносителей;

потери тепла не учитываются;

схема движения теплоносителей – противоточная;

- коэффициенты теплоотдачи в трубном и межтрубном пространствах рассчитываются при начальных температурах теплоносителей;

– теплоноситель, отдающий теплоту, направляется в трубы, а теплоноситель, воспринимающий теплоту – в межтрубное пространство.

Рисунок 6.1 – Кожухотрубный теплообменник

На рисунке 6.1 обозначены буквами $G_{x(r)}$, $t_{x(r)}$, $C_{x(r)}$ – расход, температура и теплоемкость холодного(горячего) потока. Причем $G^{H(\kappa)}$, $t^{H(\kappa)}$, $C^{H(\kappa)}$ начальные(конечные) состояние потоков.

Так как теплообменник не изменяет состава материальных потоков, то $G_x^{\ H} = G_x^{\ \kappa}, G_r^{\ H} = G_r^{\ \kappa}.$ (6.1)

Количество теплоты, переданное через площадь теплообмена в секун-

$$Q = k_{T} \cdot \frac{\Delta t_{2} - \Delta t_{1}}{\ln\left(\frac{\Delta t_{2}}{\Delta t_{1}}\right)} \cdot F, \qquad (6.2)$$

где $k_{\rm T}$ – коэффициент теплопередачи; F – площадь поверхности теплообмена; $\Delta t_1 = t_{\rm r}^{\ \kappa} - t_{\rm x}^{\ H};$ $\Delta t_2 = t_{\rm r}^{\ H} - t_{\rm x}^{\ \kappa}.$

Количество теплоты, отданное горячим теплоносителем $Q=G_r \cdot C_r \cdot (t_r^H - t_r^K),$ (6.3)

$$Q = G_x \cdot C_x \cdot (t_x^{\kappa} - t_x^{\mu}), \qquad (6.4)$$

При этом водяные эквиваленты равны: $w_r = G_r \cdot C_r, w_x = G_x \cdot C_x.$ (6.5)

Уравнение теплового баланса теплообменника имеет вид $W_{\Gamma} \cdot (t_{\Gamma}^{H} - t_{\Gamma}^{K}) = W_{X} \cdot (t_{X}^{K} - t_{X}^{H}).$ (6.6)

Из уравнения (6.6) находим

$$\mathbf{t}_{r}^{\kappa} = \mathbf{t}_{x}^{\kappa} - \frac{\mathbf{t}_{x}^{\kappa} - \mathbf{t}_{x}^{\mathrm{H}}}{\rho}, \qquad (6.7)$$

где $\rho = \frac{W_r}{W_x}$.

Так как потерями теплоты пренебрегаем, то

$$\mathbf{w}_{r} \cdot (\mathbf{t}_{r}^{H} - \mathbf{t}_{r}^{\kappa}) = \mathbf{k}_{r} \cdot \mathbf{F} \cdot \frac{(\mathbf{t}_{r}^{H} - \mathbf{t}_{x}^{\kappa}) - (\mathbf{t}_{r}^{\kappa} - \mathbf{t}_{x}^{H})}{\ln\left(\frac{\mathbf{t}_{r}^{H} - \mathbf{t}_{x}^{\kappa}}{\mathbf{t}_{r}^{\kappa} - \mathbf{t}_{x}^{H}}\right)}$$
(6.8)

Подставив (6.7) в (6.8) и выполнив простейшие преобразования, получим

$$\mathbf{t}_{\mathbf{x}}^{\kappa} = \mathbf{t}_{\mathbf{x}}^{\mathrm{H}} + (\mathbf{t}_{\mathbf{r}}^{\mathrm{H}} - \mathbf{t}_{\mathbf{x}}^{\mathrm{H}}) \cdot \rho \cdot \frac{\exp(\beta \cdot (1 - \rho)) - 1}{\exp(\beta \cdot (1 - \rho)) - \rho}, \qquad (6.9)$$

где $\beta = k_r \cdot \frac{F}{W_r}$.

Коэффициент теплопередачи рассчитывается по формуле

$$k_{\rm T} = \frac{1}{\frac{1}{\alpha_{\rm T}} + \sum r_{\rm cT} + \frac{1}{\alpha_{\rm M}}} = \frac{1}{\frac{1}{\alpha_{\rm T}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_{\rm M}}}, \qquad (6.10)$$

где а_т, а_м – коэффициенты теплоотдачи в трубном и межтрубном пространстве;

 $\sum r_{ct}$ – сумма термических сопротивлений стенки;

δ – толщина стенки внутренней трубы;

λ-коэффициент теплопроводности.

Необходимые данные для составления математической модели теплообменника G_r=1250 кг/ч; G_x=750 кг/ч; d_{вн}=0,021 м; d_{нар}=0,025 м; длина труб L=1.25 м; n_r= 20 шт. Для упрощения расчетов примем коэффициент теплопередачи равным 1 000 000 Вт/м²·К.

Необходимо рассчитать конечную температуру холодного потока. Далее определить оптимальные параметры теплообменника: зная его поверхность теплообмена определить оптимальную длину трубок и количество трубок. В качестве ограничений принять: максимальная длина трубок 4 м, максимальное количество трубок 45 шт.

6.2.1 Решение в Mathcad

В Mathcad решение данной задачи выполняется функциями minimize (y,x) и maximize (y,x) с ограничениями. Данные функции используются только в блоке решения.

Вводим блок решения (расположение: Математика/Блок решения или Ctr+1). Далее следует заполнить обозначенные поля «Начальные приближения», «Ограничения», «Решатель».

В область «Начальные условия» записываются сама функция и начальное приближение нашей переменной через знак присваивания «:=».

В область «Ограничения» записываем наши ограничения.

В область «Решатель» записывается функция поиска экстремума «minimize» или «maximize».

6.2.2 Решение в Matlab

Для решения в Matlab необходимо создать новый скрипт. Внести необходимые формулы и переменные и выполнить скрипт. Также построить необходимые графики.

В среде Matlab задачи линейного программирования решаются с помощью функции linprog. . Функция linprog решает задачу линейного программирования в форме

$$f^{T} \cdot x \to \inf,$$

$$A \cdot x \leq b,$$

Aeq \cdot x = beq,

$$lb \leq x \leq ub.$$
(6.11)

Синтаксис функции

[x, fval] = linprog(f, A, b, Aeq, beq, lb, ub), (6.12) где f – вектор коэффициентов целевой функции,

А – матрица ограничений-неравенств,

b – вектор правых частей ограничений-неравенств b,

Аеq – матрица ограничений-равенств,

beq – вектор правых частей ограничений-равенств,

lb – вектор, ограничивающий план х снизу,

ub – вектор, ограничивающий план х сверху.

На выходе функция linprog даёт оптимальный план х задачи ЛП (6.9) и экстремальное значение целевой функции fval.

6.3 Задание на выполнение работы

1) Внимательно ознакомиться с теоретическими сведениями лабораторной работы.

2) Выбрать свой вариант исходных данных. Исходные данные представлены в таблице Д.1 приложения Д. Номер варианта – это порядковый номер в журнале группы.

3) Подготовить алгоритм выполнения лабораторной работы.

4) Выполнить расчеты с использованием программных продуктов и Mathcad и Matlab.

5) Построить в одних координатах графики зависимости температуры смеси от расходов компонентов.

6) Результаты оформляются в виде отчета по выполнению лабораторной работы. Краткий отчет содержит: цель работы, исходные данные, скриншоты или листинг программы расчетов, дополнительные информационные материалы, краткий анализ результатов работы.

6.4 Контрольные вопросы

1) Какие допущения используются для построения математических моделей?

2) Что такое статическая математическая модель?

3) Что такое кожухотрубный теплообменник?

4) Что такое математическая модель?

Список рекомендуемой литературы

1 Гартман Т.Н. Основы компьютерного моделирования химиктехнологичсеких процессов / Т.Н. Гартман, Д.В. Клушин. – М.: ИКЦ Академкнига, 2006. – 416 с.

2 Дьяконов В.П. Matlab. Полный самоучитель / В.П. Дьяконов. – М.: ДМК пресс, 2012. – 768 с.

3 Кирьянов Д.В. Mathcad 15/Mathcad Prime 1.0 / Д.D. Кирьянов. – СПб.: БХВ-Петербург, 2012. – 432 с.

Приложение А – Исходные даные

140	лица и и полодны даные для лаборе		
Вариант	Задание	Вариант	Задание
1	2	3	4
1	$2-\ln(x)+x$	16	$x^2 - 3 \cdot x + 5$
	$x^2 - 7 \cdot x + y^2$, min;		$-x+7\cdot x^2+y^2-y$, min.
2	$\frac{1}{x} + \log(x) + x$, min; $15 + x^2 + 7 \cdot x + y^2$, min.	17	$\left(\frac{-x}{e^x}\right), \min;$ 0.5 • $x^2 + x + y^2 - y$, min.
3	\mathbf{x}^{2} , \mathbf{x}^{4} , \mathbf{x}^{3} , \mathbf{x}^{3} , \mathbf{x}^{3} , \mathbf{x}^{3} , \mathbf{x}^{2} , \mathbf{x}^{2} , \mathbf{y}	18	$(x-2)^2 - x$, min; $(x-2)^2 + 2 \cdot (y+2)^2$, min.
4	$x^2 - 2 \cdot x + 4$, min; $x^2 - 7 \cdot x + 3 \cdot y^2 - y + 0.5 \cdot x \cdot y$, min.	19	$x \cdot e^{x}, \min;$ 2 \cdot x^{2} + 3 \cdot y^{2} - y + x \cdot y, \min.
5	$\frac{x^2 - 0.5 \cdot x + 3}{x^2 + y^2 + e^{x + y}}, \min;$	20	$x^{2} - \sqrt{ x + 5}, \text{ min;}$ $x^{3} + y \cdot (y + 3)^{2} - x \cdot y, \text{ min.}$
6	$(x+3) \cdot (x-6)$, min; $x^2 + y^2 - (x-2) \cdot y + 15$, min.	21	$\frac{(x-3)\cdot\ln(x)}{x}, \min;$ $2\cdot x^2 + 0.2\cdot y^2 + y, \min.$
7	$(x-7) \cdot \ln(x+2), \min;$ $2 \cdot x^2 + 6 \cdot y^2 - 5 \cdot y \cdot x, \min.$	22	$(x-7) \cdot x$, min; $2 \cdot x^2 + y^2 - 5 \cdot (y+x)$, min.
8	$(x-7) \cdot (x+7), \min;$ $3 \cdot (x^2 + y^2) - 2 \cdot y \cdot x + 3 \cdot x, \min.$	23	$\frac{(x-1)\cdot(x+2\cdot e^x)}{3\cdot x^2+7\cdot y^2-4\cdot y}, \min;$

Таблица А.1 – Исходны даные для лабораторной работы №1

	Продолжение таблицы А.1		
1	2	3	4
9	$-3 \cdot (x+2)^{2}, \max;$ $-3 \cdot x^{2} - y^{2} + 2 \cdot x, \max.$	24	$-3 \cdot x^2 - 2 \cdot x$, max; $-1.2 \cdot x^2 + 5 \cdot x - 0.4 \cdot y^2 - 3$, max.
10	$-x^{2} + 4 \cdot \sqrt{x} + 5$, max; $-x^{2} + 2 \cdot x - 2 \cdot y^{2} + y$, max.	25	$-x^{2}+4\cdot x-5$, max; $-2\cdot x^{2}+5\cdot (x-y)-y^{2}$, max.
11	$\frac{(x-6)\cdot(-x+2)}{-x^2-7\cdot x-2.5\cdot y-y^2}, \max$	26	$(x-3) \cdot (-x+4) + 6$, max; $-x^2 - 4 \cdot (x+y) - 2 \cdot y^2 + 9$, max.
12	$-(x-3)\cdot\sqrt{x+4}$, max; $-x^2-7\cdot x-2.5\cdot y-y^2$, max.	27	$\frac{-(x^{2}+3)}{ x +4}, \max;$ $-x^{2}-2 \cdot y^{2} - \frac{y}{3}, \max.$
13	$ \frac{-x^{2} + 4 \cdot \sqrt{x + 4}}{-x^{2} - 0.25 \cdot x \cdot y - 0.3 \cdot y^{2} + 15}, $ max.	28	$\frac{-0.25 \cdot x^2 + 8 \cdot \sqrt{x+3}}{-2 \cdot x^2 - y^2 - \frac{x \cdot y}{4}}, \text{ max};$
14	$-0.25 \cdot x^{2} + \sin(x), \max;$ -x ² -0.25 \cdot (x + y ²) + 15, max.	29	$\frac{-x^2}{5} + \cos(2 \cdot x)$, max; $-x^2 - y^2 + \sqrt{ y \cdot x }$, max.
15	$-0.33 \cdot x^2 + \sin(2 \cdot x)$, max; $-x^2 - x - y^2 + 15$, max.	30	$ \frac{-x^{2} + (x+4)}{ x+4 }, \max; $ $ \frac{-x^{2} - y^{2} - 8 \cdot \sqrt{ y-5 \cdot x }}{ x-5 \cdot x }, \max. $

Приложение Б – Исходные даные

Вариант	Вариант Задание		Задание
1	1 2		4
1	$f = x_{1} + 2x_{2} \rightarrow \max$ $\begin{cases} 2X_{1} + X_{2} \le 14 \\ 5X_{1} - 3X_{2} \le 15 \\ X_{1} + X_{2} \le 8 \\ X_{1}, X_{2} \ge 0 \end{cases}$	16	$f = 2x_{1} + 3x_{2} \rightarrow \max$ $\begin{cases} 2X_{1} + X_{2} \le 10 \\ -2X_{1} + 3X_{2} \le 6 \\ 2X_{1} + 4X_{2} \le 8 \\ X_{1}, X_{2} \ge 0 \end{cases}$
2	$f = -2x_{1} - x_{2} \rightarrow \min$ $\begin{cases} 3X_{1} - 2X_{2} \le 12 \\ -X_{1} + 2X_{2} \le 8 \\ 2X_{1} + 3X_{2} \le 6 \\ X_{1}, X_{2} \ge 0 \end{cases}$	17	$f = x_{1} + 2x_{2} \rightarrow \max$ $\begin{cases} 3X_{1} - 2X_{2} \le 6 \\ -X_{1} + 2X_{2} \le 4 \\ 3X_{1} + 2X_{2} \le 12 \\ X_{1}, X_{2} \ge 0 \end{cases}$
3	$f = x_{1} + 2x_{2} \rightarrow \max$ $\begin{cases} 4X_{1} - 2X_{2} \le 12 \\ -X_{1} + 3X_{2} \le 6 \\ 2X_{1} + 4X_{2} \le 16 \\ X_{1}, X_{2} \ge 0 \end{cases}$	18	$f = 2x_{1} + x_{2} \to \max$ $\begin{cases} -X_{1} + X_{2} \le 2 \\ X_{1} + 2X_{2} \le 7 \\ 4X_{1} - 3X_{2} \le 6 \\ X_{1}, X_{2} \ge 0 \end{cases}$
4	$f = 3x_{1} + 4x_{2} \rightarrow \max$ $\begin{cases} -4X_{1} + 5X_{2} \le 20 \\ X_{1} + X_{2} \le 5 \\ 3X_{1} + 2X_{2} \le 12 \\ X_{1}, X_{2} \ge 0 \end{cases}$	19	$f = -7x_{1} - 5x_{2} \rightarrow \min \begin{cases} X_{1} + X_{2} \le 3 \\ X_{1} + 5X_{2} \le 5 \\ -X_{1} + X_{2} \le 0, 5 \\ X_{1}, X_{2} \ge 0 \end{cases}$
5	$f = x_{1} + x_{2} \rightarrow \max$ $\begin{cases} 2X_{1} - 4X_{2} \le 16 \\ -4X_{1} + 2X_{2} \le 8 \\ X_{1} + 3X_{2} \le 9 \\ X_{1}, X_{2} \ge 0 \end{cases}$	20	$f = x_{1} + 2x_{2} \rightarrow \max$ $\begin{cases} 2X_{1} - 3X_{2} \le 6 \\ X_{1} - 2X_{2} \le 6 \\ 2X_{1} + X_{2} \le 8 \\ X_{1}, X_{2} \ge 0 \end{cases}$

Таблица	ь Б.1 –	Исхолны	ланые	лля лабот	раторной	работы	No2
таолица	· D· 1	полодны	даные	JIM Maoo	parophon	pacorbi	J 1

Продолже	ение таблицы Б.1				
	$f = -x_1 - x_2 \to \min$		$f = 2x_1 + 3x_2 \rightarrow \max$		
	$X_{1} + 2X_{2} \le 2$		$X_{1} - 5X_{2} \le 5$		
6	$\int 2X_{1} + X_{2} \le 2$	21	$-X_{1} + X_{2} \le 4$		
	$-2X_{1}+2X_{2} \leq 1$		$X_{1} + X_{2} \le 8$		
	$X_1, X_2 \ge 0$		$X_1, X_2 \ge 0$		
	$f = x_1 + x_2 \rightarrow \max$		$f = x_1 + 2x_2 \rightarrow \max$		
	$X_{1} + X_{2} \le 4$		$\left[-2X_{1}+5X_{2}\leq10\right]$		
7	$X_{1} - 2X_{2} \le 2$	22	$5X_1 + 3X_2 \le 15$		
	$-2X_{1}+X_{2} \leq 1$		$X_{1} + 2X_{2} \le 5$		
	$X_1, X_2 \ge 0$		$X_1, X_2 \ge 0$		
	$f = 2x_1 + x_2 \rightarrow \max$		$f = 3x_1 + 2x_2 \rightarrow \max$		
8	$\left[-X_{1}+X_{2}\leq 2\right]$		$5X_1 + 2X_2 \le 15$		
	$X_{1} + 2X_{2} \le 7$	23	$2X_1 + 5X_2 \le 10$		
	$4X_{1} - 3X_{2} \le 6$		$-X_{1}+3X_{2} \leq 3$		
	$X_{1}, X_{2} \ge 0$		$X_1, X_2 \ge 0$		
	$f = -x_1 - x_2 \rightarrow \min$		$f = -6x_1 - x_2 \to \min$		
	$(2X_1 + X_2 \le 8)$		$(X_1 + 2X_2 \le 7)$		
9	$-3X_1 + X_2 \le 3$	$-3X_1 + X_2 \le 3$ 24			
	$2X_1 - 3X_2 \le 6$		$2X_{1} - X_{2} \le 5$		
	$X_{1}, X_{2} \ge 0$		$X_{1}, X_{2} \ge 0$		
	$f = 8x_1 + 2x_2 \rightarrow \max$		$f = x_1 + 2x_2 \rightarrow \max$		
	$\int 2X_1 + 4X_2 \le 12$		$(X_1 + 2X_2 \le 14)$		
10	$-2X_{1} + X_{2} \le 1$	25	$-5X_1 + 3X_2 \le 15$		
	$2X_{1} + X_{2} \le 5$		$4X_1 + 6X_2 \le 24$		
	$X_1, X_2 \ge 0$		$X_1, X_2 \ge 0$		
	$f = 2x_1 + x_2 \rightarrow \max$		$f = -2x_1 - x_2 \rightarrow \min$		
	$\int 2X_1 - X_2 \le 2$		$(3X_1 - 2X_2 \le 12)$		
11	$-X_{1} + X_{2} \le 2$	26	$-X_{1}+2X_{2} \le 8$		
	$X_{1} + X_{2} \le 3$		$3X_{1} + 2X_{2} \le 6$		
	$X_1, X_2 \ge 0$		$X_{1}, X_{2} \ge 0$		
l					

продол	жение таолицы D.1		
1	2	3	4
12	$f = x_{1} + 2x_{2} \rightarrow \max$ $\begin{cases} 4X_{1} - 3X_{2} \le 12 \\ -X_{1} + 3X_{2} \le 6 \\ X_{1} + 2X_{2} \le 6 \\ X_{1}, X_{2} \ge 0 \end{cases}$	27	$f = -x_{1} - 2x_{2} \rightarrow \min \begin{cases} 3X_{1} - 2X_{2} \le 6 \\ -X_{1} + 2X_{2} \le 4 \\ 3X_{1} + 2X_{2} \le 12 \\ X_{1}, X_{2} \ge 0 \end{cases}$
13	$f = 4x_{1} + 3x_{2} \rightarrow \max$ $\begin{cases} 12X_{1} - 5X_{2} \le 30 \\ X_{1} + 2X_{2} \le 8 \\ 3X_{1} + X_{2} \le 6 \\ X_{1}, X_{2} \ge 0 \end{cases}$	28	$f = 2x_{1} + x_{2} \rightarrow \max$ $\begin{cases} -X_{1} + X_{2} \le 2 \\ X_{1} + 2X_{2} \le 7 \\ 3X_{1} - 2X_{2} \le 6 \\ X_{1}, X_{2} \ge 0 \end{cases}$
14	$f = x_{1} + x_{2} \rightarrow \max$ $\begin{cases} X_{1} - 2X_{2} \le 8 \\ -4X_{1} + 3X_{2} \le 12 \\ X_{1} + 3X_{2} \le 9 \\ X_{1}, X_{2} \ge 0 \end{cases}$	29	$f = -7x_{1} - 5x_{2} \rightarrow \min \begin{cases} X_{1} + X_{2} \le 7 \\ X_{1} - 5X_{2} \le 5 \\ -2X_{1} + X_{2} \le 4 \\ X_{1}, X_{2} \ge 0 \end{cases}$
15	$f = 2x_{1} + 3x_{2} \rightarrow \max$ $\begin{cases} 2X_{1} + X_{2} \leq 8 \\ -2X_{1} + 3X_{2} \leq 6 \\ X_{1} + 4X_{2} \leq 8 \\ X_{1}, X_{2} \geq 0 \end{cases}$	30	$f = x_1 + 3x_2 \rightarrow \max$ $\begin{cases} 2X_1 - 3X_2 \le 6\\ X_1 - 2X_2 \le 6\\ 2X_1 + X_2 \le 8\\ X_1, X_2 \ge 0 \end{cases}$

Прололжение таблицы Б.1

Приложение В – Исходные даные

Транспортная задача. На складах A1, A2 хранится n1, n2 единиц одного того же груза соответственно. Требуется доставить его трем магазинам B1, B2, B3 заказы которых составляют m1, m2, m3 единиц груза. Стоимость перевозки с_{ij} единицы груза с i–го склада j–ому потребителю указаны в транспортной таблице B.1. Найти минимальную стоимость перевозок.

лабораторной работы №3										
Склады	Ma	гази	ны	Итого	Склады	Магазины		Итого		
1	2	3	4	5	6	7	8	9	10	
Вариант 1	B1	B2	B3	Итого	Вариант 16	B1	B2	B3	Итого	
A1	3	1	4	50	A1	3	6	6	56	
A2	2	3	1	50	A2	4	5	3	44	
Итого	35	41	25		Итого	36	42	38		
Вариант 2	B1	B2	B3	Итого	Вариант 17	B1	B2	B3	Итого	
Al	1	2	4	43	Al	7	4	7	61	
A2	3	5	1	57	A2	6	9	8	39	
Итого	35	43	24		Итого	25	25	67		
Вариант 3	B1	B2	B3	Итого	Вариант 18	B1	B2	B3	Итого	
Al	21	23	24	67	Al	12	11	14	51	
A2	26	19	18	33	A2	16	14	15	49	
Итого	15	45	43		Итого	5	65	48		
Вариант 4	B1	B2	B3	Итого	Вариант 19	B1	B2	B3	Итого	
A1	33	28	37	52	A1	5	2	7	31	
A2	29	36	31	48	A2	2	3	1	69	
Итого	72	16	16		Итого	49	45	25		
Вариант 5	B1	B2	B3	Итого	Вариант 20	B1	B2	B3	Итого	
A1	8	1	3	41	A1	2	6	4	27	
A2	3	9	1	59	A2	2	4	1	83	
Итого	44	33	38		Итого	50	15	55		
Вариант 6	B1	B2	B3	Итого	Вариант 21	B1	B2	B3	Итого	
A1	6	4	7	37	A1	4	3	9	13	
A2	8	2	4	63	A2	7	2	2	87	
Итого	16	34	56		Итого	61	5	55		
Вариант 7	B1	B2	B3	Итого	Вариант 22	B1	B2	B3	Итого	
A1	12	16	14	84	A1	26	1	24	91	
A2	13	19	11	16	A2	30	23	28	9	
Итого	35	35	37		Итого	3	57	62		

Таблица В.1 – Исходные данные транспортной задачи для пабораторной работы №3

1	2	3	4	5	6	7	8	9	10
Вариант 8	B1	B2	B3	Итого	Вариант 23	B1	B2	B3	Итого
Al	44	41	48	75	Al	43	41	44	68
A2	45	38	49	75	A2	42	43	41	82
Итого	50	50	58		Итого	77	27	69	
Вариант 9	B1	B2	B3	Итого	Вариант 24	B1	B2	B3	Итого
Al	57	51	56	58	A1	42	58	44	70
A2	49	56	49	92	A2	53	43	41	80
Итого	53	53	53		Итого	66	54	54	
Вариант 10	B1	B2	B3	Итого	Вариант 25	B1	B2	B3	Итого
A1	24	27	26	110	A1	15	17	16	60
A2	28	21	24	40	A2	18	13	19	90
Итого	50	60	50		Итого	99	43	33	
Вариант 11	B1	B2	B3	Итого	Вариант 26	B1	B2	B3	Итого
A1	5	4	7	125	A1	9	5	1	62
A2	8	6	3	25	A2	7	8	3	88
Итого	36	34	91		Итого	88	44	44	
Вариант 12	B1	B2	B3	Итого	Вариант 27	B1	B2	B3	Итого
A1	14	16	19	73	A1	22	31	30	44
A2	14	18	12	77	A2	29	23	28	106
Итого	66	30	66		Итого	15	65	97	
Вариант 13	B1	B2	B3	Итого	Вариант 28	B1	B2	B3	Итого
A1	34	31	39	113	A1	36	33	31	122
A2	33	36	32	37	A2	38	39	35	28
Итого	40	79	44		Итого	56	93	29	
Вариант 14	B1	B2	B 3	Итого	Вариант 29	B1	B2	B3	Итого
A1	44	39	48	54	A1	26	31	24	39
A2	49	49	41	96	A2	28	33	25	111
Итого	35	35	94		Итого	79	80	20	
Вариант 15	B1	B2	B3	Итого	Вариант 30	B1	B2	B3	Итого
A1	12	19	14	71	A1	7	3	9	45
A2	14	18	16	89	A2	5	8	6	105
Итого	55	55	55		Итого	60	60	60	

Продолжение таблицы В.1

Задача о смеси. В таблице В.2 приведено недельное потребление витаминов для человека (в граммах), данные характеризующие содержание (по весу) питательных веществ в каждом из продуктов питания и удельную стоимость каждого из овощей. Требуется определить количество (в килограммах) каждого из трёх продуктов питания, образующих недельную потребность в витаминах при минимальной стоимости. Общий вес овощей, для суточного потребления не более 10 килограмм.

Таблица В.2 – Исходные данные задачи на смеси для лабораторной работы №3

	Соде	ржание	вита-	L)		Соде	L)		
Продукт		минов		Ha ./KI	Продукт		минов		Ha ./KI
питания	А,	B6,	B12,	Цe	питания	А,	В6,	B12,	Цe
	г./кг.	г./кг.	г./кг.	d)		г./кг.	г./кг.	г./кг.	d)
1	2	3	4	5	6	7	8	9	10
Вариант 1	≥12	≥12	≥18		Вариант 16	≥22	≤60	≥35	
Томат	5	1	4	2,1	Капуста	0,25	4	6	1,2
Огурец	1	7	2	1,1	Морковь	12	0,25	3	1
Перец	1	1	12	3,6	Свекла	6	3	7	1,5
Вариант 2	≥30	≥36	≥45		Вариант 17	≥14	≥25	≥12	
Кабачок	3	2,3	1	0,8	Кукуруза	3	1,3	0,9	2,56
Брокколи	4	6	2,3	2,2	Редис	2,6	6	2	3,9
Тыква	0,5	1,9	11	1,3	Картофель	0,9	2	1,7	0,86
Вариант 3	≥20	≥15	≥35		Вариант 18	≥22	=12	≥14	
Томат	4,8	1,3	4,4	2,1	Капуста	7,25	1,08	1,96	1,2
Огурец	0,8	6,	2,5	1,1	Морковь	0,44	2,91	1,23	1
Перец	1,1	0,5	14,7	3,6	Свекла	0,98	1,09	3,09	1,5
Вариант 4	≥8	≥20	≥30		Вариант 19	≥16	≥27	≥16	
Кабачок	9,21	1,73	2,32	0,8	Кукуруза	3,1	1,56	1,1	2,56
Брокколи	0,23	3,56	1,32	2,2	Редис	2,4	6,3	1,9	3,9
Тыква	1,01	2,19	4,08	1,3	Картофель	0,55	0,75	2,1	0,86
Вариант 5	≥24	≥25	≥30		Вариант 20	≥22	≥36	≤75	
Томат	4,4	1,1	3,8	2,1	Капуста	2,7	0,3	6	1,2
Огурец	1,2	7,3	2,4	1,1	Морковь	3,6	4	3,2	1
Перец	0,86	0,9	11	3,6	Свекла	2	0,5	0,4	1,5
Вариант 6	=19	=11	≥17		Вариант 21	≥15	≥29	≥18	
Кабачок	4,12	0,26	0,78	0,8	Кукуруза	2,89	1,7	1,25	2,56
Брокколи	1,53	7,77	2,45	2,2	Редис	1,98	5,9	2,1	3,9
Тыква	2,60	1,78	9,58	1,3	Картофель	0,9	1,1	3	0,86
Вариант 7	≥30	≥29	≥35		Вариант 22	≥18	≤32	≤32	
Томат	4,3	1,9	0,46	2,1	Капуста	1,2	0,6	0,3	1,2
Огурец	1,9	9	1,1	1,1	Морковь	1,3	6	1	1
Перец	2	1,4	9	3,6	Свекла	4	3,2	9	1,5
Вариант 8	≥7	=16	≥5		Вариант 23	≥18	≥22	≥14	
Кабачок	5,65	0,19	1,52	0,8	Кукуруза	2,44	1,25	2,2	2,56
Брокколи	0,92	6,54	0,37	2,2	Редис	1,23	6,3	1,5	3,9
Тыква	0,36	1,07	9,58	1,3	Картофель	1,1	1,05	1	0,86

Продолжение	таблицы В.2
-------------	-------------

1	2	3	4	5	6	7	8	9	10
Вариант 9	≤56	≥30	≥30		Вариант 24	≤75	≥33	≥27	
Томат	5	1	0,5	2,1	Капуста	3	1,2	2,3	1,2
Огурец	1	8,5	0,3	1,1	Морковь	1,1	4,4	0,89	1
Перец	0,2	0,9	12	3,33	Свекла	1,6	2,95	6,5	1,5
Вариант 10	=22	=33	≥17		Вариант 25	≤33	≥19	≥16	
Кабачок	9,25	232	1,38	0,8	Кукуруза	2,22	2	4	2,56
Брокколи	1,73	8,76	1,94	2,2	Редис	1,3	5	0,5	3,9
Тыква	2,14	0,07	10,78	1,3	Картофель	0,5	0,8	1,5	0,86
Вариант 11	=25	≥28	≥32		Вариант 26	≥28	≤13	≥27	
Томат	5,3	1,23	0,78	2,1	Капуста	6,3	0,8	1,68	1,2
Огурец	1,26	7,56	1,14	1,1	Морковь	1,1	4,4	4,89	1
Перец	0,33	0,9	10	3,6	Свекла	2,1	1,3	3,5	1,5
Вариант 12	≥13	=43	≥21		Вариант 27	≤45	≥21	≥18	
Кабачок	3,72	0,38	1,7	0,8	Кукуруза	1,99	1,2	3,9	2,56
Брокколи	0,49	5,88	2,16	2,2	Редис	1,23	4,4	0,75	3,9
Тыква	1,05	1,94	5,09	1,3	Картофель	0,75	0,95	0,85	0,86
Вариант 13	≥10	≥28	=10		Вариант 28	≥33	≤25	≥19	
Томат	4	0,21	0,98	2,1	Капуста	6,12	1,05	2,2	1,2
Огурец	1,26	8,16	1,54	1,1	Морковь	1,09	5,1	3,33	1
Перец	0,98	0,9	15,23	3,6	Свекла	1,08	0,9	2,5	1,5
Вариант 14	=28	≥18	≥21		Вариант 29	≥16	≤75	≥22	
Кабачок	7,04	1,73	0,25	0,8	Кукуруза	2,6	1,2	0,6	2,56
Брокколи	1,52	9,27	0,79	2,2	Редис	0,56	6,8	4,2	3,9
Тыква	0,32	0,06	6,42	1,3	Картофель	0,33	0,67	0,78	0,86
Вариант 15	≥16	=17	≤63		Вариант 30	≤45	≥44	≥31	
Томат	18,96	0,61	0,44	2,1	Капуста	6,2	3,6	2,3	1,2
Огурец	1,19	14,32	1,211	1,1	Морковь	1,5	2,5	3,33	1
Перец	0,96	1,13	16,87	3,6	Свекла	2	9	4	1,5

Задача о производственном планировании. Предприятие производит три вида лакокрасочных изделий К1, К2 и К3 из трех видов сырья пигмент, основа, растворитель. Доход от продажи красок, запасы сырья, и траты сырья на килограмм краски приведены в таблице В3. На складе одновременно может храниться только 350 кг краски. Необходимо вычислить план производства красок, для получения максимальной прибыли.

Таблица В.3 – Исходные данные производственной задачи для лабораторной работы №3

		Сырье					Сырье		
Продукт	Пигмент, кг.	Основа, кг.	Растворитель, кг.	Цена (руб./кг.)	Цена (руб./кг.) Шодукт		Основа, кг.	Растворитель, кг.	Цена (руб./шт.)
1	2	3	4	5	6	7	8	9	10
Вариант 1	≤40	≤200	≤100		Вариант 16	≤15	≤90	≤75	
Краска №1	0,04	0,2	0,1	7	Краска №1	0,04	0,5	0,2	5
Краска №2	0,06	0,6	0,2	12	Краска №2	0,035	0,2	0,9	5
Краска №3	0,05	0,3	0,15	9	Краска №3	0,014	0,9	0,3	5
Вариант 2	≤45	≤200	≤80		Вариант 17	≤15	≤90	≤75	
Краска №1	0,034	0,33	0,51	7	Краска №1	0,04	0,5	0,2	2,5
Краска №2	0,06	0,6	0,2	9	Краска №2	0,035	0,2	0,9	7
Краска №3	0,1	0,2	0,15	9	Краска №3	0,014	0,9	0,3	5,5
Вариант 3	≤55	≤125	≤80		Вариант 18	≤15	≤90	≤75	
Краска №1	0,04	0,5	0,2	6	Краска №1	0,036	0,46	0,4	2,5
Краска №2	0,05	0,3	0,2	7,5	Краска №2	0,03	0,39	0,71	7
Краска №3	0,05	0,5	0,5	8	Краска №3	0,04	0,53	0,29	5,5
Вариант 4	≤15	≤185	≤150		Вариант 19	≤19	≤99	≤125	
Краска №1	0,052	0,6	0,4	7,5	Краска №1	0,036	0,46	0,4	2
Краска №2	0,053	0,75	0,4	7	Краска №2	0,03	0,39	0,71	7
Краска №3	0,045	0,35	0,6	8	Краска №3	0,04	0,53	0,29	5
Вариант 5	<u>≤</u> 35	≤125	≤200		Вариант 20	≤19	≤99	≤125	
Краска №1	0,042	0,56	0,42	7,5	Краска №1	0,06	0,6	0,42	2
Краска №2	0,063	0,5	0,38	9	Краска №2	0,053	0,3	0,41	7
Краска №3	0,03	0,3	0,6	8	Краска №3	0,064	0,5	0,29	5
Вариант 6	≤45	≤150	≤150		Вариант 21	≤36	≤139	≤125	
Краска №1	0,043	0,2	0,1	8	Краска №1	0,06	0,6	0,42	2
Краска №2	0,053	0,6	0,2	6	Краска №2	0,053	0,3	0,41	7
Краска №3	0,062	0,3	0,15	7	Краска №3	0,064	0,5	0,29	5
Вариант 7	≤15	≤85	≤75		Вариант 22	≤36	≤139	≤125	
Краска №1	0,04	0,4	0,4	8	Краска №1	0,06	0,6	0,42	4
Краска №2	0,05	0,5	0,8	6	Краска №2	0,053	0,3	0,41	6
Краска №3	0,07	0,3	0,3	7	Краска №3	0,064	0,5	0,29	7
Вариант 8	≤42	≤125	≤125		Вариант 23	≤36	≤139	≤125	
Краска №1	0,054	0,42	0,38	9	Краска №1	0,047	0,59	0,48	4
Краска №2	0,062	0,62	0,56	11	Краска №2	0,058	0,47	0,37	6
Краска №3	0,049	0,37	0,44	10	Краска №3	0,046	0,32	0,51	7
Вариант 9	≤30	≤100	≤95		Вариант 24	≤44	≤100	≤125	
Краска №1	0,054	0,42	0,38	11	Краска №1	0,047	0,59	0,48	12
Краска №2	0,062	0,62	0,56	9	Краска №2	0,058	0,47	0,37	9
Краска №3	0,049	0,37	0,44	10	Краска №3	0,046	0,32	0,51	11

1	2	3	4	5	6	7	8	9	10
Вариант 10	≤35	≤100	≤95		Вариант 25	≤28	≤69	≤78	
Краска №1	0,033	0,3	0,8	11	Краска №1	0,047	0,59	0,48	12
Краска №2	0,022	0,5	0,6	9	Краска №2	0,058	0,47	0,37	9
Краска №3	0,033	0,37	0,6	9	Краска №3	0,046	0,32	0,51	11
Вариант 11	≤35	≤100	≤95		Вариант 26	≤28	≤69	≤78	
Краска №1	0,033	0,3	0,8	3	Краска №1	0,07	0,36	0,8	12
Краска №2	0,022	0,5	0,6	4	Краска №2	0,06	0,49	0,3	9
Краска №3	0,033	0,37	0,6	2	Краска №3	0,04	0,52	0,31	11
Вариант 12	≤44	≤96	≤67		Вариант 27	≤28	≤69	≤78	
Краска №1	0,033	0,3	0,8	3	Краска №1	0,07	0,36	0,8	8
Краска №2	0,022	0,5	0,6	4	Краска №2	0,06	0,49	0,3	9
Краска №3	0,033	0,37	0,6	2	Краска №3	0,04	0,52	0,31	7
Вариант 13	≤44	≤96	≤67		Вариант 28	≤55	≤132	≤100	
Краска №1	0,03	0,5	0,4	3	Краска №1	0,07	0,36	0,4	8
Краска №2	0,042	0,41	0,3	4	Краска №2	0,06	0,49	0,3	9
Краска №3	0,053	0,52	0,4	2	Краска №3	0,04	0,2	0,31	7
Вариант 14	≤29	≤68	≤100		Вариант 29	≤55	≤132	≤100	
Краска №1	0,03	0,5	0,2	5	Краска №1	0,027	0,3	0,46	13
Краска №2	0,02	0,6	0,25	6	Краска №2	0,036	0,4	0,23	11
Краска №3	0,03	0,7	0,6	7	Краска №3	0,054	0,52	0,73	12
Вариант 15	≤33	≤90	≤125		Вариант 30	≤28	≤87	≤63	
Краска №1	0,03	0,5	0,2	5	Краска №1	0,027	0,3	0,46	6
Краска №2	0,02	0,6	0,25	6	Краска №2	0,036	0,4	0,23	4
Краска №3	0,03	0,7	0,6	7	Краска №3	0,054	0,52	0,73	7

Продолжение таблицы В.3

Приложение Г – Исходные даные

Banuaur	Запание	Вариант	
Бариант 1	Заданис	риант 2	Заданис Л
1	$\frac{z}{x^2 + 7 \cdot x + 4 \cdot y^2} \rightarrow \min,$	16	$7 \cdot x^2 + y^2 - y - x \rightarrow \min,$
	$x-y\leq 8,$		$x-2\cdot y\leq 9,$
	$3 \cdot x + y \ge 3,$		$x + 0.5 \cdot y \ge 3,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
2	$x^2 + 7 \cdot x + y^2 \to \min,$		$0.5 \cdot x^2 + y^2 - y + x \rightarrow \min,$
	$2 \cdot x - y \le 9,$	17	$-x+2\cdot y\leq 4,$
	$3 \cdot x + 0.5 \cdot y \ge 4,$	17	$2 \cdot x + y \ge 8,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
3	$x^2 + x \cdot y + y^2 \rightarrow \min,$		$(x-2)^2 + 2 \cdot (y+2)^2 \rightarrow \min,$
	$-x+y\leq 2,$	18	$-x+2 \cdot y \le 4,$
	$x+4\cdot y\geq 9,$	10	$2 \cdot x + y \ge 8,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
4	$x^2 - 7 \cdot x - y + 3 \cdot y^2 \to \min,$		$2 \cdot x^2 + 3 \cdot y^2 - y + x \cdot y \to \min,$
	$-x + y \le 2,$		$-x+2\cdot y\leq 4,$
	$x + 4 \cdot y \ge 9,$	19	$2 \cdot x + y \ge 8,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
5	$x^2 + y^2 - x \cdot y + 5 \cdot x \longrightarrow \min,$		$x^2 + y \cdot (y+3) - x \cdot y \to \min,$
	$-x + y \le 1,$	20	$-x+2 \cdot y \le 4,$
	$x + 4 \cdot y \ge 9,$	20	$2 \cdot x + y \ge 8,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
6	$x^2 - (x-2) \cdot y + y^2 \rightarrow \min,$		$2 \cdot x^2 + 0.2 \cdot y^2 + y \to \min,$
	$x-2 \cdot y \le 9,$	21	$-x+2\cdot y\leq 4,$
	$x + 0.5 \cdot y \ge 3,$	21	$2 \cdot x + y \ge 8,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
7	$2 \cdot x^2 - 5 \cdot x \cdot y + 6 \cdot y^2 \rightarrow \min,$		$2 \cdot x^2 + y^2 - 5 \cdot (x + y) \rightarrow \min,$
	$x-2\cdot y\leq 9,$	22	$x-2\cdot y\leq 5,$
	$x + 0.5 \cdot y \ge 3,$		$0.5 \cdot x + y \ge 4,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$

Таблица Г.1 – Исходны даные для лабораторной работы №4

Продолжение	таблицы Г.1

1	2	3	4
8	$3 \cdot (x^2 + y^2) - 2 \cdot x \cdot y + 3 \cdot x \rightarrow \min,$		$3 \cdot x^2 + 7 \cdot y^2 - 4 \cdot y \to \min,$
	$x-2\cdot y\leq 9,$	22	$x-2 \cdot y \le 5,$
	$x + 0.5 \cdot y \ge 3,$	23	$0.5 \cdot x + y \ge 4,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
9	$-3 \cdot x^2 - y^2 + 2 \cdot x \to \max,$		$-1.2 \cdot x^2 + 5 \cdot x - 0.4 \cdot y^2 \rightarrow \max,$
	$x - 0.5 \cdot y \le -1,$	24	$x + y \ge 6,$
	$0.5 \cdot x + y \ge 6,$		$-x + 6 \cdot y \le 8,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
10	$-x^2 - 2 \cdot y^2 + 2 \cdot x + y \to \max,$		$-2 \cdot x^2 + 5 \cdot (x - y) - y^2 \rightarrow \max,$
	$x - 0.5 \cdot y \le -1,$	25	$x + y \ge 4,$
	$0.5 \cdot x + y \ge 6,$	25	$x-y\leq-2,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
11	$-x^2 - y^2 - 7 \cdot \mathbf{x} - 2.5 \cdot \mathbf{y} \to \max,$		$-x^2 - 4 \cdot (x + y) - 2 \cdot y^2 \rightarrow \max,$
	$x + y \le 10,$	26	$x + 2 \cdot y \ge 2.5,$
	$4 \cdot x - 0.2 \cdot y \ge 8,$	20	$1.5 \cdot x - y \le 8,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
12	$-x^2 - y^2 - 7 \cdot \mathbf{x} - 2.5 \cdot \mathbf{y} \to \max,$		$-x^2 - 2 \cdot y^2 - y/3 \to \max,$
	$x + y \le 10,$	27	$x + 2 \cdot y \ge 2.5,$
	$4 \cdot x - 0.2 \cdot y \ge 8,$	21	$1.5 \cdot x - y \le 8,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
13	$-x^2 - 0.3 \cdot y^2 - 0.25 \cdot x \cdot y \rightarrow \max,$		$-2 \cdot x^2 - y^2 - y \cdot x/4 \to \max,$
	$x + y \ge 15,$	28	$x+3\cdot y\geq 4,$
	$-4 \cdot x + 2 \cdot y \ge 7,$	20	$x-y\leq 8,$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
14	$-x^2 - 0.25 \cdot (x + y^2) \rightarrow \max,$		$-x^2 - y^2 + \sqrt{ y \cdot x } \rightarrow \max,$
	$x + y \ge 8,$	20	$x+3 \cdot y \ge 4,$
	$-4 \cdot x + 2 \cdot y \le 4,$	29	$x-y \leq 8$,
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$
15	$-x^2 - x - y^2 \to \max,$		$-x^2 - y^2 - 8 \cdot \sqrt{ y - 5 \cdot x } \rightarrow \max$
	$x + y \ge 12,$	30	$2 \cdot x + y \ge 6$
	$x + 6 \cdot y \le 18,$		$x-2 \cdot y \leq 3$
	$x \ge 0, y \ge 0.$		$x \ge 0, y \ge 0.$

Приложение Д – Исходные даные

	Задание								
Вариант	4	Поток 1		Поток 2					
1	с _{смеси} ,	Цена,	C _{p1} ,	t ₁ ,	Цена,	C _{p2} ,	t ₂ ,		
	C	рублей	Дж /кг•К	°C	рублей	Дж /кг•К	°C		
1	48	1000	3505	80	300	3171	20		
2	60	800	3964	100	100	2693	10		
3	48	950	3309	80	200	2994	20		
4	54	880	3057	90	250	2515	25		
5	52,8	820	3892	88	300	2952	30		
6	49,2	870	3731	82	280	3088	28		
7	37,8	980	3552	63	480	2915	18		
8	54	800	3617	90	550	2639	22		
9	55,2	850	3662	92	600	2642	23		
10	30	860	3029	50	1100	2434	12		
11	36	900	3474	60	1200	2751	21		
12	39	920	3306	65	1100	2695	13		
13	38,4	960	3016	64	1200	2645	18		
14	43,2	930	3540	72	1000	3098	22		
15	49,2	990	3505	82	800	3171	23		
16	52,8	820	3925	88	300	2291	30		
17	55,2	850	3291	92	600	2721	23		
18	48	1000	3712	80	300	3125	20		
19	55,2	850	3794	92	600	2332	23		
20	39	920	3669	65	1100	3066	13		
21	60	800	3471	100	100	2608	10		
22	36	900	3290	60	1200	2432	21		
23	37,8	980	3943	63	480	2603	18		
24	48	950	3214	80	200	2248	20		
25	54	800	3835	90	550	3081	22		
26	37,8	980	3957	63	480	2666	18		
27	54	880	3757	90	250	2722	25		
28	45	840	3454	75	175	2955	33		
29	49,2	910	3591	82	225	2523	25		
30	51.6	820	3925	86	190	2291	16		

Таблица Д.1 – Исходны даные для лабораторных работ №5 и №6

Учебное издание

ОСНОВЫ КОМПЬЮТЕРИЗАЦИИ ТЕХНОЛОГИЙ В СИСТЕМАХ АВТОМАТИКИ ХИМИЧЕСКОЙ (ПИЩЕВОЙ) ПРОМЫШЛЕННОСТИ

Лабораторный практикум

Составитель: Колюкович Евгений Александрович

Редактор А. А. Щербакова Технический редактор М.О. Хлыстова

Подписано в печатьФормат 60х84 1/16Бумага офсетная. Гарнитура Таймс. Печать трафаретная.
Усл. печ. л.Уч.-изд. л.Усл. печ. л.Уч.-изд. л.ТиражЗаказ

Отпечатано на ризографе редакционно-издательского отдела учреждения образования «Могилевский государственный университет продовольствия». 212027, Могилев, пр-т Шмидта, 3. ЛИ № 02330/0131913 от 08.02.2007.